Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Larval ecology of Anopheles coluzzii in Cape Coast, Ghana: water quality, nature of habitat and implication for larval control

Author: Andreas A. Kudom

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

There is a growing interest in larval control intervention to supplement existing malaria control strategies, particularly in urban areas. However, effective implementation requires a good understanding of habitat ecology of Anopheles mosquitoes. Clean water bodies have long been reported by several studies as a preferred breeding habitat for Anopheles gambiae. Other studies have also reported the breeding of An. gambiae in polluted water bodies. However, the term clean or polluted is mostly based on visual examination and is not well defined. This study was conducted with the aim of assessing water quality in Anopheles breeding habitats and the practicability of larval control in Cape Coast, Ghana.

Methods

A larval survey was conducted for 15 months in Cape Coast. In individual breeding habitats, habitat characteristics, physicochemical parameters and bacterial fauna were measured in both Anopheles positive breeding (APL) habitats and habitats colonized by only Culex species. The sibling species of An. gambiae were identified using PCR assay.

Results

Anopheles coluzzii dominated in almost all the APL habitats found in this study. The habitats had high levels of salinity and ammonium ions. However, ammonium ions were significantly higher (p = 0.001) in habitats colonized by only Culex larvae compared to APL habitats. About 47 % of the habitats that were colonized by only Culex larvae had no measurable dissolved oxygen while An. coluzzii was absent in such habitats. High concentration of faecal bacteria confirmed faecal contamination in both groups of breeding habitats.

Conclusions

From the results, it was evident that larval stages of An. coluzzii have tolerance to high levels of salinity and organic pollution in breeding habitats. However, its level of tolerance to organic pollution is probably lower than Culex larvae. The nature of breeding habitats found in the city demonstrates the opportunistic behaviour of An. coluzzii and how its breeding requirements are so intimately intertwined with the haphazard and uncontrolled human activities in the urban area. Considering the nature of APL habitats, larval control intervention could greatly reduce Anopheles population. However, improving basic hygiene and sanitation in the city could even make larval control intervention more practical and cost effective.
Literature
2.
go back to reference Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol. 2012;3:199.PubMedCentralCrossRefPubMed Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol. 2012;3:199.PubMedCentralCrossRefPubMed
3.
go back to reference Keiser J, Utzinger J, Castro MC, Smith TA, Tanner M, Singer BH. Urbanisation in sub-Saharan Africa and implication for malaria control. Am J Trop Med Hyg. 2004;71:118–27.PubMed Keiser J, Utzinger J, Castro MC, Smith TA, Tanner M, Singer BH. Urbanisation in sub-Saharan Africa and implication for malaria control. Am J Trop Med Hyg. 2004;71:118–27.PubMed
4.
go back to reference Killeen GF, Seyoum A, Knols BG. Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management. Am J Trop Med Hyg. 2004;71:87–93.PubMed Killeen GF, Seyoum A, Knols BG. Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management. Am J Trop Med Hyg. 2004;71:87–93.PubMed
5.
6.
go back to reference Chinery WA. Effects of ecological changes on the malaria vectors Anopheles funestus and the Anopheles gambiae complex of mosquitoes in Accra, Ghana. Trop Med Int Health. 1984;87:75–81. Chinery WA. Effects of ecological changes on the malaria vectors Anopheles funestus and the Anopheles gambiae complex of mosquitoes in Accra, Ghana. Trop Med Int Health. 1984;87:75–81.
7.
go back to reference Afrane YA, Klinkenberg E, Drechsel P, Owusu-Daaku K, Garms R, Kruppa T. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana? Acta Trop. 2004;89:125–34.CrossRefPubMed Afrane YA, Klinkenberg E, Drechsel P, Owusu-Daaku K, Garms R, Kruppa T. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana? Acta Trop. 2004;89:125–34.CrossRefPubMed
8.
9.
go back to reference Muirhead-Thomson RC. Mosquito behaviour in relation to malaria transmission and control in the tropics. London: Edward Arnold & Co.; 1951. Muirhead-Thomson RC. Mosquito behaviour in relation to malaria transmission and control in the tropics. London: Edward Arnold & Co.; 1951.
10.
go back to reference Sattler MA, Mtasiwa D, Kiama M, Premji Z, Tanner M, Killeen GF, et al. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dares Salaam (Tanzania) during an extended dry period. Malar J. 2005;4:4.PubMedCentralCrossRefPubMed Sattler MA, Mtasiwa D, Kiama M, Premji Z, Tanner M, Killeen GF, et al. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dares Salaam (Tanzania) during an extended dry period. Malar J. 2005;4:4.PubMedCentralCrossRefPubMed
11.
go back to reference Kamdem C, TeneFossog B, Simard F, Etouna J, Ndo C, Kengne P, et al. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae. PLoS One. 2012;7:e39453.PubMedCentralCrossRefPubMed Kamdem C, TeneFossog B, Simard F, Etouna J, Ndo C, Kengne P, et al. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae. PLoS One. 2012;7:e39453.PubMedCentralCrossRefPubMed
12.
go back to reference Leboffe MJ, Burton EP. Microbiology laboratory theory and application. Englewood: Morton Publishing Company; 2010. Leboffe MJ, Burton EP. Microbiology laboratory theory and application. Englewood: Morton Publishing Company; 2010.
13.
go back to reference Gillies, MT, Coetzee M: A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Publications of the South African Institute for Medical Research, no. 55. SAIMR, Johannesburg 1987. Gillies, MT, Coetzee M: A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Publications of the South African Institute for Medical Research, no. 55. SAIMR, Johannesburg 1987.
14.
go back to reference Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.PubMed Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.PubMed
15.
go back to reference Santolamazza F, Calzetta M, Etang J, Barrese E, Dia I, Caccone A, et al. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar J. 2008;7:74.PubMedCentralCrossRefPubMed Santolamazza F, Calzetta M, Etang J, Barrese E, Dia I, Caccone A, et al. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar J. 2008;7:74.PubMedCentralCrossRefPubMed
16.
go back to reference Smith JL, Fonseca DM. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg. 2004;70:339–45.PubMed Smith JL, Fonseca DM. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg. 2004;70:339–45.PubMed
17.
go back to reference Clements AN. The biology of mosquitoes: development, nutrition and reproduction. Amsterdam: Kluwer Academic Publishers; 1992. Clements AN. The biology of mosquitoes: development, nutrition and reproduction. Amsterdam: Kluwer Academic Publishers; 1992.
18.
go back to reference Tene Fossog B, Antonio-Nkondjio C, Kengne P, Njiokou F, Besansky NJ, Costantini C. Physiological correlates of ecological divergence along an urbanisation gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol. 2013;13:1.PubMedCentralCrossRefPubMed Tene Fossog B, Antonio-Nkondjio C, Kengne P, Njiokou F, Besansky NJ, Costantini C. Physiological correlates of ecological divergence along an urbanisation gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol. 2013;13:1.PubMedCentralCrossRefPubMed
19.
go back to reference Fillinger U, Sonye G, Killeen GF, Knols BGJ, Becker N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health. 2004;9:1274–89.CrossRefPubMed Fillinger U, Sonye G, Killeen GF, Knols BGJ, Becker N. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health. 2004;9:1274–89.CrossRefPubMed
20.
go back to reference Yawson AE, McCall PJ, Wilson MD, Donnelly MJ. Species abundance and insecticide resistance of Anopheles gambiae in selected areas of Ghana and Burkina Faso. Med Vet Entomol. 2004;18:372–7.CrossRefPubMed Yawson AE, McCall PJ, Wilson MD, Donnelly MJ. Species abundance and insecticide resistance of Anopheles gambiae in selected areas of Ghana and Burkina Faso. Med Vet Entomol. 2004;18:372–7.CrossRefPubMed
21.
go back to reference de Souza D, Kelly-Hope L, Lawson B, Wilson M, Boakye D. Environmental factors associated with the distribution of Anopheles gambiae s.s. in Ghana; an important vector of lymphatic filariasis and malaria. PLoS One. 2010;5:e9927.PubMedCentralCrossRefPubMed de Souza D, Kelly-Hope L, Lawson B, Wilson M, Boakye D. Environmental factors associated with the distribution of Anopheles gambiae s.s. in Ghana; an important vector of lymphatic filariasis and malaria. PLoS One. 2010;5:e9927.PubMedCentralCrossRefPubMed
22.
go back to reference Tene Fossog B, Ayala D, Acevedo P, Kengne P, Abeso Mebuy INA. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evol Appl. 2015;8:326–45.PubMedCentralCrossRefPubMed Tene Fossog B, Ayala D, Acevedo P, Kengne P, Abeso Mebuy INA. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evol Appl. 2015;8:326–45.PubMedCentralCrossRefPubMed
23.
go back to reference Simard F, Ayala D, Kamdem G, Pombi M, Etouna J, Ose K, et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 2009;9:17.PubMedCentralCrossRefPubMed Simard F, Ayala D, Kamdem G, Pombi M, Etouna J, Ose K, et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 2009;9:17.PubMedCentralCrossRefPubMed
24.
go back to reference Costantini C, Ayala D, Guelbeogo W, Pombi M, Some C, Bassole I, et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 2009;9:16.PubMedCentralCrossRefPubMed Costantini C, Ayala D, Guelbeogo W, Pombi M, Some C, Bassole I, et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 2009;9:16.PubMedCentralCrossRefPubMed
25.
go back to reference Gimonneau G, Pombi M, Choisy M, Morand S, Dabire RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med Vet Entomol. 2012;26:9–17.PubMedCentralCrossRefPubMed Gimonneau G, Pombi M, Choisy M, Morand S, Dabire RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med Vet Entomol. 2012;26:9–17.PubMedCentralCrossRefPubMed
26.
go back to reference Mireji PO, Keating J, Hassanali A, Mbogo CM, Muturi MN, Githure JI, et al. Biological cost of tolerance to heavy metals in the mosquito Anopheles gambiae. Med Vet Entomol. 2010;24:101–7.PubMedCentralCrossRefPubMed Mireji PO, Keating J, Hassanali A, Mbogo CM, Muturi MN, Githure JI, et al. Biological cost of tolerance to heavy metals in the mosquito Anopheles gambiae. Med Vet Entomol. 2010;24:101–7.PubMedCentralCrossRefPubMed
27.
go back to reference Reisen WK, Meyer RP, Shields J, Arbolante C. Population ecology of preimaginal Culex tarsalis (Diptera: Culicidae) in Kern County, California. J Med Entomol. 1989;26:10–22.CrossRefPubMed Reisen WK, Meyer RP, Shields J, Arbolante C. Population ecology of preimaginal Culex tarsalis (Diptera: Culicidae) in Kern County, California. J Med Entomol. 1989;26:10–22.CrossRefPubMed
28.
go back to reference Kudom AA, Mensah BA, Froeschl G, Boakye D, Rinder H. Preliminary assessment of the potential role of urbanisation in the distribution of carbamate and organophosphate resistant populations of Culex species in Ghana. Parasit Vectors. 2015;8:8.PubMedCentralCrossRefPubMed Kudom AA, Mensah BA, Froeschl G, Boakye D, Rinder H. Preliminary assessment of the potential role of urbanisation in the distribution of carbamate and organophosphate resistant populations of Culex species in Ghana. Parasit Vectors. 2015;8:8.PubMedCentralCrossRefPubMed
29.
go back to reference Yawson AE, Weetman D, Wilson MD, Donnelly MJ. Ecological zones rather than molecular forms predict genetic differentiation in the malaria vector Anopheles gambiae s.s. in Ghana. Genetics. 2007;175:751–61.PubMedCentralCrossRefPubMed Yawson AE, Weetman D, Wilson MD, Donnelly MJ. Ecological zones rather than molecular forms predict genetic differentiation in the malaria vector Anopheles gambiae s.s. in Ghana. Genetics. 2007;175:751–61.PubMedCentralCrossRefPubMed
30.
go back to reference Opoku AA, Ansa-Asare OD, Amoako J. The occurrences and habitat characteristics of mosquitoes in Accra, Ghana. West Afr J Appl Ecol. 2007;11:81–6. Opoku AA, Ansa-Asare OD, Amoako J. The occurrences and habitat characteristics of mosquitoes in Accra, Ghana. West Afr J Appl Ecol. 2007;11:81–6.
31.
go back to reference Kabula BI, Attah PK, Wilson MD, Boakye D. Characterization of Anopheles gambiae s.l and insecticide resistance profile relative to physicochemical properties of breeding habitats within Accra Metropolis, Ghana. Tanzania J Health Res. 2011;13:3.CrossRef Kabula BI, Attah PK, Wilson MD, Boakye D. Characterization of Anopheles gambiae s.l and insecticide resistance profile relative to physicochemical properties of breeding habitats within Accra Metropolis, Ghana. Tanzania J Health Res. 2011;13:3.CrossRef
32.
go back to reference Kudom AA, Mensah BA, Agyeman TK. Characterization of mosquito larval habitats and assessment of insecticide-resistance status of Anopheles gambiae senso lato in urban areas in south western Ghana. J Vector Ecol. 2012;37:77–82.CrossRefPubMed Kudom AA, Mensah BA, Agyeman TK. Characterization of mosquito larval habitats and assessment of insecticide-resistance status of Anopheles gambiae senso lato in urban areas in south western Ghana. J Vector Ecol. 2012;37:77–82.CrossRefPubMed
33.
go back to reference Keating J, Macintyre K, Mbogo C, Githure JI, Beier J. Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya. Int J Health Geogr. 2004;3:9.PubMedCentralCrossRefPubMed Keating J, Macintyre K, Mbogo C, Githure JI, Beier J. Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya. Int J Health Geogr. 2004;3:9.PubMedCentralCrossRefPubMed
Metadata
Title
Larval ecology of Anopheles coluzzii in Cape Coast, Ghana: water quality, nature of habitat and implication for larval control
Author
Andreas A. Kudom
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0989-4

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine