Skip to main content
Top
Published in: Cancer Cell International 1/2023

Open Access 01-12-2023 | Artificial Intelligence | Research

Artificial intelligence-driven new drug discovery targeting serine/threonine kinase 33 for cancer treatment

Authors: Na Ly Tran, Hyerim Kim, Cheol-Hee Shin, Eun Ko, Seung Ja Oh

Published in: Cancer Cell International | Issue 1/2023

Login to get access

Abstract

Background

Artificial intelligence (AI) is capable of integrating a large amount of related information to predict therapeutic relationships such as disease treatment with known drugs, gene expression, and drug-target binding. AI has gained increasing attention as a promising tool for next-generation drug development.

Methods

An AI method was used for drug repurposing and target identification for cancer. Among 8 survived candidates after background checking, N-(1-propyl-1H-1,3-benzodiazol-2-yl)-3-(pyrrolidine-1-sulfonyl) benzamide (Z29077885) was newly selected as an new anti-cancer drug, and the anti-cancer efficacy of Z29077885 was confirmed using cell viability, western blot, cell cycle, apoptosis assay in MDA-MB 231 and A549 in vitro. Then, anti-tumor efficacy of Z29077885 was validated in an in vivo A549 xenograft in BALB/c nude mice.

Results

First, we discovered an antiviral agent, Z29077885, as a new anticancer drug candidate using the AI deep learning method. Next, we demonstrated that Z29077885 inhibits Serine/threonine kinase 33 (STK33) enzymatic function in vitro and showed the anticancer efficacy in various cancer cells. Then, we found enhanced apoptosis via S-phase cell cycle arrest as the mechanism underlying the anticancer efficacy of Z29077885 in both lung and breast cancer cells. Finally, we confirmed the anti-tumor efficacy of Z29077885 in an in vivo A549 xenograft.

Conclusions

In this study, we used an AI-driven screening strategy to find a novel anticancer medication targeting STK33 that triggers cancer cell apoptosis and cell cycle arrest at the s phase. It will pave a way to efficiently discover new anticancer drugs.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ko Y. Computational drug repositioning: current progress and challenges. Appl Sci. 2020;10(15):5076.CrossRef Ko Y. Computational drug repositioning: current progress and challenges. Appl Sci. 2020;10(15):5076.CrossRef
3.
go back to reference Askr H, Elgeldawi E, Aboul Ella H, Elshaier Y, Gomaa MM, Hassanien AE. Deep learning in drug discovery: an integrative review and future challenges. Artif Intell Rev. 2023;56(7):5975–6037.CrossRefPubMed Askr H, Elgeldawi E, Aboul Ella H, Elshaier Y, Gomaa MM, Hassanien AE. Deep learning in drug discovery: an integrative review and future challenges. Artif Intell Rev. 2023;56(7):5975–6037.CrossRefPubMed
4.
go back to reference Rajula HSR, Verlato G, Manchia M, Antonucci N, Fanos V. Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment. Medicina. 2020;56(9):455.CrossRefPubMedPubMedCentral Rajula HSR, Verlato G, Manchia M, Antonucci N, Fanos V. Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment. Medicina. 2020;56(9):455.CrossRefPubMedPubMedCentral
5.
go back to reference Roses AD. Pharmacogenetics in drug discovery and development: a translational perspective. Nat Rev Drug Discov. 2008;7(10):807–17.CrossRefPubMed Roses AD. Pharmacogenetics in drug discovery and development: a translational perspective. Nat Rev Drug Discov. 2008;7(10):807–17.CrossRefPubMed
6.
go back to reference Mottini C, Napolitano F, Li Z, Gao X, Cardone L. Computer-aided drug repurposing for cancer therapy: approaches and opportunities to challenge anticancer targets. Semin Cancer Biol. 2021;68:59–74.CrossRefPubMed Mottini C, Napolitano F, Li Z, Gao X, Cardone L. Computer-aided drug repurposing for cancer therapy: approaches and opportunities to challenge anticancer targets. Semin Cancer Biol. 2021;68:59–74.CrossRefPubMed
7.
go back to reference Kong F, Kong X, Du Y, Chen Y, Deng X, Zhu J, Du J, Li L, Jia Z, Xie D, Li Z, Xie K. STK33 promotes growth and progression of pancreatic cancer as a critical downstream mediator of HIF1alpha. Cancer Res. 2017;77(24):6851–62.CrossRefPubMed Kong F, Kong X, Du Y, Chen Y, Deng X, Zhu J, Du J, Li L, Jia Z, Xie D, Li Z, Xie K. STK33 promotes growth and progression of pancreatic cancer as a critical downstream mediator of HIF1alpha. Cancer Res. 2017;77(24):6851–62.CrossRefPubMed
8.
go back to reference Kong FY, Kong XY, Du YQ, Chen Y, Deng X, Zhu JW, Du JW, Li L, Jia ZL, Xie DC, Li ZS, Xie KP. STK33 promotes growth and progression of pancreatic cancer as a critical downstream mediator of HIF1 alpha. Cancer Res. 2017;77(24):6851–62.CrossRefPubMed Kong FY, Kong XY, Du YQ, Chen Y, Deng X, Zhu JW, Du JW, Li L, Jia ZL, Xie DC, Li ZS, Xie KP. STK33 promotes growth and progression of pancreatic cancer as a critical downstream mediator of HIF1 alpha. Cancer Res. 2017;77(24):6851–62.CrossRefPubMed
9.
go back to reference Yang T, Song B, Zhang J, Yang GS, Zhang H, Yu WF, Wu MC, Lu JH, Shen F. STK33 promotes hepatocellular carcinoma through binding to c-Myc. Gut. 2016;65(1):124–33.CrossRefPubMed Yang T, Song B, Zhang J, Yang GS, Zhang H, Yu WF, Wu MC, Lu JH, Shen F. STK33 promotes hepatocellular carcinoma through binding to c-Myc. Gut. 2016;65(1):124–33.CrossRefPubMed
10.
go back to reference Azoitei N, Hoffmann CM, Ellegast JM, Ball CR, Obermayer K, Gossele U, Koch B, Faber K, Genze F, Schrader M, Kestler HA, Dohner H, Chiosis G, Glimm H, Frohling S, Scholl C. Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. J Exp Med. 2012;209(4):697–711.CrossRefPubMedPubMedCentral Azoitei N, Hoffmann CM, Ellegast JM, Ball CR, Obermayer K, Gossele U, Koch B, Faber K, Genze F, Schrader M, Kestler HA, Dohner H, Chiosis G, Glimm H, Frohling S, Scholl C. Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. J Exp Med. 2012;209(4):697–711.CrossRefPubMedPubMedCentral
11.
go back to reference Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S, Dohner K, Bullinger L, Sandy P, Boehm JS, Root DE, Jacks T, Hahn WC, Gilliland DG. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009;137(5):821–34.CrossRefPubMed Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S, Dohner K, Bullinger L, Sandy P, Boehm JS, Root DE, Jacks T, Hahn WC, Gilliland DG. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009;137(5):821–34.CrossRefPubMed
13.
go back to reference Luo T, Masson K, Jaffe JD, Silkworth W, Ross NT, Scherer CA, Scholl C, Frohling S, Carr SA, Stern AM, Schreiber SL, Golub TR. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability. Proc Natl Acad Sci USA. 2012;109(8):2860–5.CrossRefPubMedPubMedCentral Luo T, Masson K, Jaffe JD, Silkworth W, Ross NT, Scherer CA, Scholl C, Frohling S, Carr SA, Stern AM, Schreiber SL, Golub TR. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability. Proc Natl Acad Sci USA. 2012;109(8):2860–5.CrossRefPubMedPubMedCentral
14.
go back to reference Weiwer M, Spoonamore J, Wei J, Guichard B, Ross NT, Masson K, Silkworth W, Dandapani S, Palmer M, Scherer CA, Stern AM, Schreiber SL, Munoz B. A potent and selective quinoxalinone-based STK33 inhibitor does not show synthetic lethality in KRAS-dependent cells. ACS Med Chem Lett. 2012;3(12):1034–8.CrossRefPubMedPubMedCentral Weiwer M, Spoonamore J, Wei J, Guichard B, Ross NT, Masson K, Silkworth W, Dandapani S, Palmer M, Scherer CA, Stern AM, Schreiber SL, Munoz B. A potent and selective quinoxalinone-based STK33 inhibitor does not show synthetic lethality in KRAS-dependent cells. ACS Med Chem Lett. 2012;3(12):1034–8.CrossRefPubMedPubMedCentral
16.
go back to reference Richter RR, Austin TM. Using MeSH (Medical Subject Headings) to enhance pubmed search strategies for evidence-based practice in physical therapy. Phys Ther. 2012;92(1):124–32.CrossRefPubMed Richter RR, Austin TM. Using MeSH (Medical Subject Headings) to enhance pubmed search strategies for evidence-based practice in physical therapy. Phys Ther. 2012;92(1):124–32.CrossRefPubMed
17.
go back to reference Baugh SDP, Ye H, Xu X, Guo J-T, Xiao T, Du Y, Block T. Novel antiviral agents against hbv infection, Google Patents, 2014. Baugh SDP, Ye H, Xu X, Guo J-T, Xiao T, Du Y, Block T. Novel antiviral agents against hbv infection, Google Patents, 2014.
18.
go back to reference Babij C, Zhang YH, Kurzeja RJ, Munzli A, Shehabeldin A, Fernando M, Quon K, Kassner PD, Ruefli-Brasse AA, Watson VJ, Fajardo F, Jackson A, Zondlo J, Sun Y, Ellison AR, Plewa CA, San Miguel T, Robinson J, McCarter J, Schwandner R, Judd T, Carnahan J, Dussault I. STK33 kinase activity is nonessential in KRAS-dependent cancer cells. Cancer Res. 2011;71(17):5818–26.CrossRefPubMed Babij C, Zhang YH, Kurzeja RJ, Munzli A, Shehabeldin A, Fernando M, Quon K, Kassner PD, Ruefli-Brasse AA, Watson VJ, Fajardo F, Jackson A, Zondlo J, Sun Y, Ellison AR, Plewa CA, San Miguel T, Robinson J, McCarter J, Schwandner R, Judd T, Carnahan J, Dussault I. STK33 kinase activity is nonessential in KRAS-dependent cancer cells. Cancer Res. 2011;71(17):5818–26.CrossRefPubMed
20.
go back to reference Liu Y, Steinestel K, Rouhi A, Armacki M, Diepold K, Chiosis G, Simmet T, Seufferlein T, Azoitei N. STK33 participates to HSP90-supported angiogenic program in hypoxic tumors by regulating HIF-1α/VEGF signaling pathway. Oncotarget. 2017;8(44):77474–88.CrossRefPubMedPubMedCentral Liu Y, Steinestel K, Rouhi A, Armacki M, Diepold K, Chiosis G, Simmet T, Seufferlein T, Azoitei N. STK33 participates to HSP90-supported angiogenic program in hypoxic tumors by regulating HIF-1α/VEGF signaling pathway. Oncotarget. 2017;8(44):77474–88.CrossRefPubMedPubMedCentral
21.
go back to reference Azoitei N, Hoffmann CM, Ellegast JM, Ball CR, Obermayer K, Gössele U, Koch B, Faber K, Genze F, Schrader M, Kestler HA, Döhner H, Chiosis G, Glimm H, Fröhling S, Scholl C. Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. J Exp Med. 2012;209(4):697–711.CrossRefPubMedPubMedCentral Azoitei N, Hoffmann CM, Ellegast JM, Ball CR, Obermayer K, Gössele U, Koch B, Faber K, Genze F, Schrader M, Kestler HA, Döhner H, Chiosis G, Glimm H, Fröhling S, Scholl C. Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. J Exp Med. 2012;209(4):697–711.CrossRefPubMedPubMedCentral
22.
go back to reference Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velazquez Vega JE, Brat DJ, Cooper LAD. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci USA. 2018;115(13):E2970–9.CrossRefPubMedPubMedCentral Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velazquez Vega JE, Brat DJ, Cooper LAD. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci USA. 2018;115(13):E2970–9.CrossRefPubMedPubMedCentral
23.
go back to reference Cingoz O, Goff SP. Cyclin-dependent kinase activity is required for type I interferon production. P Natl Acad Sci USA. 2018;115(13):E2950–9.CrossRef Cingoz O, Goff SP. Cyclin-dependent kinase activity is required for type I interferon production. P Natl Acad Sci USA. 2018;115(13):E2950–9.CrossRef
24.
25.
go back to reference Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.CrossRefPubMed Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.CrossRefPubMed
26.
go back to reference Tran NL, Lee IK, Kim H, Lee K, Kim SH, Oh SJ. Facile construction of tumour spheroids with induced M2 macrophage polarization for anticancer drug screening. Biomed Mater. 2022;17(6):065015.CrossRef Tran NL, Lee IK, Kim H, Lee K, Kim SH, Oh SJ. Facile construction of tumour spheroids with induced M2 macrophage polarization for anticancer drug screening. Biomed Mater. 2022;17(6):065015.CrossRef
27.
go back to reference Edmondson R, Broglie JJ, Adcock AF, Yang LJ. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207–18.CrossRefPubMedPubMedCentral Edmondson R, Broglie JJ, Adcock AF, Yang LJ. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207–18.CrossRefPubMedPubMedCentral
28.
go back to reference Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.CrossRefPubMed Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.CrossRefPubMed
29.
go back to reference Islam S, Wang S, Bowden N, Martin J, Head R. Repurposing existing therapeutics, its importance in oncology drug development: kinases as a potential target. Br J Clin Pharmacol. 2021;88(1):64–74.CrossRefPubMed Islam S, Wang S, Bowden N, Martin J, Head R. Repurposing existing therapeutics, its importance in oncology drug development: kinases as a potential target. Br J Clin Pharmacol. 2021;88(1):64–74.CrossRefPubMed
31.
go back to reference Tanoli Z, Vaha-Koskela M, Aittokallio T. Artificial intelligence, machine learning, and drug repurposing in cancer. Expert Opin Drug Dis. 2021;16(9):977–89.CrossRef Tanoli Z, Vaha-Koskela M, Aittokallio T. Artificial intelligence, machine learning, and drug repurposing in cancer. Expert Opin Drug Dis. 2021;16(9):977–89.CrossRef
34.
go back to reference Liu Q, Xie L. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. Plos Comput Biol. 2021;17(2):e1008653.CrossRefPubMedPubMedCentral Liu Q, Xie L. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. Plos Comput Biol. 2021;17(2):e1008653.CrossRefPubMedPubMedCentral
Metadata
Title
Artificial intelligence-driven new drug discovery targeting serine/threonine kinase 33 for cancer treatment
Authors
Na Ly Tran
Hyerim Kim
Cheol-Hee Shin
Eun Ko
Seung Ja Oh
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2023
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-023-03176-2

Other articles of this Issue 1/2023

Cancer Cell International 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine