Skip to main content
Top
Published in: Cancer Cell International 1/2023

Open Access 01-12-2023 | Review

The role of alternative pre-mRNA splicing in cancer progression

Authors: Sunkyung Choi, Namjoon Cho, Eun-Mi Kim, Kee K. Kim

Published in: Cancer Cell International | Issue 1/2023

Login to get access

Abstract

Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.
Literature
2.
go back to reference Irimia M, Roy SW. Evolutionary convergence on highly-conserved 3 ' Intron Structures in Intron-Poor Eukaryotes and Insights into the ancestral eukaryotic genome. PLOS Genet. 2008;4(8):e1000148.PubMedPubMedCentralCrossRef Irimia M, Roy SW. Evolutionary convergence on highly-conserved 3 ' Intron Structures in Intron-Poor Eukaryotes and Insights into the ancestral eukaryotic genome. PLOS Genet. 2008;4(8):e1000148.PubMedPubMedCentralCrossRef
3.
go back to reference Choi S, Cho N, Kim KK. Non-canonical splice junction processing increases the diversity of RBFOX2 splicing isoforms. Int J Biochem Cell Biol. 2022;144:106172.PubMedCrossRef Choi S, Cho N, Kim KK. Non-canonical splice junction processing increases the diversity of RBFOX2 splicing isoforms. Int J Biochem Cell Biol. 2022;144:106172.PubMedCrossRef
4.
go back to reference Choi S, Lee HS, Cho N, Kim I, Cheon S, Park C, et al. RBFOX2-regulated TEAD1 alternative splicing plays a pivotal role in Hippo-YAP signaling. Nucleic Acids Res. 2022;50(15):8658–73.PubMedPubMedCentralCrossRef Choi S, Lee HS, Cho N, Kim I, Cheon S, Park C, et al. RBFOX2-regulated TEAD1 alternative splicing plays a pivotal role in Hippo-YAP signaling. Nucleic Acids Res. 2022;50(15):8658–73.PubMedPubMedCentralCrossRef
5.
go back to reference Cho N, Joo J, Choi S, Kang BG, Lee AJ, Youn SY, et al. A novel splicing variant of DJ-1 in Parkinson’s disease induces mitochondrial dysfunction. Heliyon. 2023;9(3):e14039.PubMedPubMedCentralCrossRef Cho N, Joo J, Choi S, Kang BG, Lee AJ, Youn SY, et al. A novel splicing variant of DJ-1 in Parkinson’s disease induces mitochondrial dysfunction. Heliyon. 2023;9(3):e14039.PubMedPubMedCentralCrossRef
6.
go back to reference Lee S, Jung H, Choi S, Cho N, Kim EM, Kim KK. Intron retention decreases METTL3 expression by inhibiting mRNA export to the cytoplasm. BMB Rep. 2023;56(9):514–9.PubMedPubMedCentralCrossRef Lee S, Jung H, Choi S, Cho N, Kim EM, Kim KK. Intron retention decreases METTL3 expression by inhibiting mRNA export to the cytoplasm. BMB Rep. 2023;56(9):514–9.PubMedPubMedCentralCrossRef
7.
go back to reference Chan JJ, Zhang B, Chew XH, Salhi A, Kwok ZH, Lim CY, et al. Pan-cancer pervasive upregulation of 3’ UTR splicing drives tumourigenesis. Nat Cell Biol. 2022;24(6):928–39.PubMedPubMedCentralCrossRef Chan JJ, Zhang B, Chew XH, Salhi A, Kwok ZH, Lim CY, et al. Pan-cancer pervasive upregulation of 3’ UTR splicing drives tumourigenesis. Nat Cell Biol. 2022;24(6):928–39.PubMedPubMedCentralCrossRef
8.
go back to reference Pan Q, Shai O, Lee LJ, Frey JB, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.PubMedCrossRef Pan Q, Shai O, Lee LJ, Frey JB, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.PubMedCrossRef
9.
12.
go back to reference Daguenet E, Dujardin G, Valcárcel J. The pathogenicity of splicing defects: mechanistic insights into pre-mRNA processing inform novel therapeutic approaches. EMBO Rep. 2015;16(12):1640–55.PubMedPubMedCentralCrossRef Daguenet E, Dujardin G, Valcárcel J. The pathogenicity of splicing defects: mechanistic insights into pre-mRNA processing inform novel therapeutic approaches. EMBO Rep. 2015;16(12):1640–55.PubMedPubMedCentralCrossRef
13.
go back to reference Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 patients. Cancer Cell. 2018;34(2):211–24.PubMedPubMedCentralCrossRef Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 patients. Cancer Cell. 2018;34(2):211–24.PubMedPubMedCentralCrossRef
15.
go back to reference Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714.PubMedPubMedCentralCrossRef Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714.PubMedPubMedCentralCrossRef
16.
go back to reference Orth JD, Loewer A, Lahav G, Mitchison TJ. Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol Biol Cell. 2012;23(4):567–76.PubMedPubMedCentralCrossRef Orth JD, Loewer A, Lahav G, Mitchison TJ. Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol Biol Cell. 2012;23(4):567–76.PubMedPubMedCentralCrossRef
17.
go back to reference Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88.PubMedCrossRef Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88.PubMedCrossRef
18.
19.
go back to reference Wahl MC, Will CL, Lührmann R. The spliceosome: Design Principles of a dynamic RNP machine. Cell. 2009;136(4):701–18.PubMedCrossRef Wahl MC, Will CL, Lührmann R. The spliceosome: Design Principles of a dynamic RNP machine. Cell. 2009;136(4):701–18.PubMedCrossRef
21.
go back to reference Denisov SV, Bazykin GA, Sutormin R, Favorov AV, Mironov AA, Gelfand MS, et al. Weak negative and positive selection and the drift load at Splice Sites. Genome Biol Evol. 2014;6(6):1437–47.PubMedPubMedCentralCrossRef Denisov SV, Bazykin GA, Sutormin R, Favorov AV, Mironov AA, Gelfand MS, et al. Weak negative and positive selection and the drift load at Splice Sites. Genome Biol Evol. 2014;6(6):1437–47.PubMedPubMedCentralCrossRef
22.
go back to reference Montemayor EJ, Curran EC, Liao HH, Andrews KL, Treba CN, Butcher SE, et al. Core structure of the U6 small nuclear ribonucleoprotein at 1.7-Å resolution. Nat Struct Mol Biol. 2014;21(6):544–51.PubMedPubMedCentralCrossRef Montemayor EJ, Curran EC, Liao HH, Andrews KL, Treba CN, Butcher SE, et al. Core structure of the U6 small nuclear ribonucleoprotein at 1.7-Å resolution. Nat Struct Mol Biol. 2014;21(6):544–51.PubMedPubMedCentralCrossRef
23.
go back to reference Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The Evolutionary Landscape of Alternative Splicing in Vertebrate Species. Science. 2012;338(6114):1587–93.PubMedCrossRef Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The Evolutionary Landscape of Alternative Splicing in Vertebrate Species. Science. 2012;338(6114):1587–93.PubMedCrossRef
24.
go back to reference Van Nostrand EL, Freese P, Pratt GA, Wang XF, Wei XT, Xiao R, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583(7818):711–9.PubMedPubMedCentralCrossRef Van Nostrand EL, Freese P, Pratt GA, Wang XF, Wei XT, Xiao R, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583(7818):711–9.PubMedPubMedCentralCrossRef
25.
go back to reference Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol. 2023;24(4):242–54.PubMedCrossRef Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol. 2023;24(4):242–54.PubMedCrossRef
27.
go back to reference Ding L, Cao JQ, Lin W, Chen HJ, Xiong XH, Ao HS, et al. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast Cancer. Int J Mol Sci. 2020;21(6):1960.PubMedPubMedCentralCrossRef Ding L, Cao JQ, Lin W, Chen HJ, Xiong XH, Ao HS, et al. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast Cancer. Int J Mol Sci. 2020;21(6):1960.PubMedPubMedCentralCrossRef
28.
go back to reference Collier AE, Spandau DF, Wek RC. Translational control of a human CDKN1A mRNA splice variant regulates the fate of UVB-irradiated human keratinocytes. Mol Biol Cell. 2018;29(1):29–41.PubMedPubMedCentralCrossRef Collier AE, Spandau DF, Wek RC. Translational control of a human CDKN1A mRNA splice variant regulates the fate of UVB-irradiated human keratinocytes. Mol Biol Cell. 2018;29(1):29–41.PubMedPubMedCentralCrossRef
30.
go back to reference Petronzelli F, Sollima D, Coppola G, Martini-Neri ME, Neri G, Genuardi M. CDKN2A germline splicing mutation affecting both P16(ink4) and P14(arf) RNA processing in a melanoma/neurofibroma kindred. Genes Chromosom Cancer. 2001;31(4):398–401.PubMedCrossRef Petronzelli F, Sollima D, Coppola G, Martini-Neri ME, Neri G, Genuardi M. CDKN2A germline splicing mutation affecting both P16(ink4) and P14(arf) RNA processing in a melanoma/neurofibroma kindred. Genes Chromosom Cancer. 2001;31(4):398–401.PubMedCrossRef
31.
go back to reference Loo JCY, Liu L, Hao AH, Gao LZ, Agatep R, Shennan M, et al. Germline splicing mutations of CDKN2A predispose to melanoma. Oncogene. 2003;22(41):6387–94.PubMedCrossRef Loo JCY, Liu L, Hao AH, Gao LZ, Agatep R, Shennan M, et al. Germline splicing mutations of CDKN2A predispose to melanoma. Oncogene. 2003;22(41):6387–94.PubMedCrossRef
32.
go back to reference Zschemisch NH, Liedtke C, Dierssen U, Nevzorova YA, Wüstefeld T, Borlak J, et al. Expression of a cyclin E1 isoform in mice is correlated with the quiescent cell cycle status of hepatocytes in vivo. Hepatology. 2006;44(1):164–73.PubMedCrossRef Zschemisch NH, Liedtke C, Dierssen U, Nevzorova YA, Wüstefeld T, Borlak J, et al. Expression of a cyclin E1 isoform in mice is correlated with the quiescent cell cycle status of hepatocytes in vivo. Hepatology. 2006;44(1):164–73.PubMedCrossRef
33.
go back to reference Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene. 2006;25(11):1620–8.PubMedCrossRef Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene. 2006;25(11):1620–8.PubMedCrossRef
34.
go back to reference Paronetto MP, Cappellari M, Busà R, Pedrotti S, Vitali R, Comstock C, et al. Alternative splicing of the cyclin D1 Proto-Oncogene is regulated by the RNA-Binding protein Sam68. Cancer Res. 2010;70(1):229–39.PubMedCrossRef Paronetto MP, Cappellari M, Busà R, Pedrotti S, Vitali R, Comstock C, et al. Alternative splicing of the cyclin D1 Proto-Oncogene is regulated by the RNA-Binding protein Sam68. Cancer Res. 2010;70(1):229–39.PubMedCrossRef
35.
go back to reference Comstock CES, Augello MA, Benito RP, Karch J, Tran TH, Utama FE, et al. Cyclin D1 splice variants: polymorphism, risk, and isoform-specific regulation in prostate Cancer. Clin Cancer Res. 2009;15(17):5338–49.PubMedPubMedCentralCrossRef Comstock CES, Augello MA, Benito RP, Karch J, Tran TH, Utama FE, et al. Cyclin D1 splice variants: polymorphism, risk, and isoform-specific regulation in prostate Cancer. Clin Cancer Res. 2009;15(17):5338–49.PubMedPubMedCentralCrossRef
36.
go back to reference Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z, et al. Cyclin D1 splice variants - Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem. 2003;278(32):30339–47.PubMedCrossRef Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z, et al. Cyclin D1 splice variants - Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem. 2003;278(32):30339–47.PubMedCrossRef
37.
go back to reference Lu FM, Gladden AB, Diehl JA. An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res. 2003;63(21):7056–61.PubMed Lu FM, Gladden AB, Diehl JA. An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res. 2003;63(21):7056–61.PubMed
38.
go back to reference Sun Q, Zhang FX, Wafa K, Baptist T, Pasumarthi KBS. A splice variant of cyclin D2 regulates cardiomyocyte cell cycle through a novel protein aggregation pathway. J Cell Sci. 2009;122(10):1563–73.PubMedCrossRef Sun Q, Zhang FX, Wafa K, Baptist T, Pasumarthi KBS. A splice variant of cyclin D2 regulates cardiomyocyte cell cycle through a novel protein aggregation pathway. J Cell Sci. 2009;122(10):1563–73.PubMedCrossRef
39.
go back to reference Denicourt C, Legault P, McNabb FA, Rassart E. Human and mouse cyclin D2 splice variants: transforming activity and subcellular localization. Oncogene. 2008;27(9):1253–62.PubMedCrossRef Denicourt C, Legault P, McNabb FA, Rassart E. Human and mouse cyclin D2 splice variants: transforming activity and subcellular localization. Oncogene. 2008;27(9):1253–62.PubMedCrossRef
40.
go back to reference Ellenrieder C, Bartosch B, Lee GYC, Murphy M, Sweeney C, Hergersberg M, et al. The long form of CDK2 arises via alternative splicing and forms an active protein kinase with cyclins a and E. DNA Cell Biol. 2001;20(7):413–23.PubMedCrossRef Ellenrieder C, Bartosch B, Lee GYC, Murphy M, Sweeney C, Hergersberg M, et al. The long form of CDK2 arises via alternative splicing and forms an active protein kinase with cyclins a and E. DNA Cell Biol. 2001;20(7):413–23.PubMedCrossRef
41.
go back to reference Ji XJ, Humenik J, Yang D, Liebhaber SA. PolyC-binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing. Nucleic Acids Res. 2018;46(4):2030–44.PubMedCrossRef Ji XJ, Humenik J, Yang D, Liebhaber SA. PolyC-binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing. Nucleic Acids Res. 2018;46(4):2030–44.PubMedCrossRef
42.
go back to reference Jackson DP, Ting JHH, Pozniak PD, Meurice C, Schleidt SS, Dao A, et al. Identification and characterization of two novel alternatively spliced E2F1 transcripts in the rat CNS. Mol Cell Neurosci. 2018;92:1–11.PubMedPubMedCentralCrossRef Jackson DP, Ting JHH, Pozniak PD, Meurice C, Schleidt SS, Dao A, et al. Identification and characterization of two novel alternatively spliced E2F1 transcripts in the rat CNS. Mol Cell Neurosci. 2018;92:1–11.PubMedPubMedCentralCrossRef
43.
go back to reference Cates HM, Heller EA, Lardner CK, Purushothaman I, Peña CJ, Walker DM, et al. Transcription factor E2F3a in Nucleus Accumbens affects Cocaine Action via transcription and alternative splicing. Biol Psychiat. 2018;84(3):167–79.PubMedCrossRef Cates HM, Heller EA, Lardner CK, Purushothaman I, Peña CJ, Walker DM, et al. Transcription factor E2F3a in Nucleus Accumbens affects Cocaine Action via transcription and alternative splicing. Biol Psychiat. 2018;84(3):167–79.PubMedCrossRef
44.
go back to reference He YW, Armanious MK, Thomas MJ, Cress WD. Identification of E2F-3B, an alternative form of E2F-3 lacking a conserved N-terminal region. Oncogene. 2000;19(30):3422–33.PubMedCrossRef He YW, Armanious MK, Thomas MJ, Cress WD. Identification of E2F-3B, an alternative form of E2F-3 lacking a conserved N-terminal region. Oncogene. 2000;19(30):3422–33.PubMedCrossRef
45.
go back to reference Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L, et al. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by rb proteins. Mol Cell Biol. 2000;20(10):3626–32.PubMedPubMedCentralCrossRef Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L, et al. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by rb proteins. Mol Cell Biol. 2000;20(10):3626–32.PubMedPubMedCentralCrossRef
46.
go back to reference Cygan KJ, Soemedi R, Rhine CL, Profeta A, Murphy EL, Murray MF, et al. Defective splicing of the RB1 transcript is the dominant cause of retinoblastomas. Hum Genet. 2017;136(9):1303–12.PubMedPubMedCentralCrossRef Cygan KJ, Soemedi R, Rhine CL, Profeta A, Murphy EL, Murray MF, et al. Defective splicing of the RB1 transcript is the dominant cause of retinoblastomas. Hum Genet. 2017;136(9):1303–12.PubMedPubMedCentralCrossRef
47.
go back to reference Bhateja P, Chiu M, Wildey G, Lipka MB, Fu PF, Yang MCL, et al. Retinoblastoma mutation predicts poor outcomes in advanced non small cell lung cancer. Cancer Med. 2019;8(4):1459–66.PubMedPubMedCentralCrossRef Bhateja P, Chiu M, Wildey G, Lipka MB, Fu PF, Yang MCL, et al. Retinoblastoma mutation predicts poor outcomes in advanced non small cell lung cancer. Cancer Med. 2019;8(4):1459–66.PubMedPubMedCentralCrossRef
48.
go back to reference Dehainault C, Michaux D, Pages-Berhouet S, Caux-Moncoutier V, Doz F, Desjardins L, et al. A deep intronic mutation in the RB1 gene leads to intronic sequence exonisation. Eur J Hum Genet. 2007;15(4):473–7.PubMedCrossRef Dehainault C, Michaux D, Pages-Berhouet S, Caux-Moncoutier V, Doz F, Desjardins L, et al. A deep intronic mutation in the RB1 gene leads to intronic sequence exonisation. Eur J Hum Genet. 2007;15(4):473–7.PubMedCrossRef
49.
go back to reference Valverde JR, Alonso J, Palacios I, Pestana A. RBI gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database. BMC Genet. 2005;6. Valverde JR, Alonso J, Palacios I, Pestana A. RBI gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database. BMC Genet. 2005;6.
50.
go back to reference Senturk S, Yao Z, Camioloa M, Stilesb B, Rathod T, Walsh AM, et al. p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci U S A. 2014;111(32):E3287–96.PubMedPubMedCentralCrossRef Senturk S, Yao Z, Camioloa M, Stilesb B, Rathod T, Walsh AM, et al. p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci U S A. 2014;111(32):E3287–96.PubMedPubMedCentralCrossRef
51.
go back to reference Miller M, Shirole N, Tian R, Pal D, Sordella R. The evolution of TP53 mutations: from loss-of-function to separation-of-function mutants. J Cancer Biol Res. 2016;4(4):1091.PubMedPubMedCentral Miller M, Shirole N, Tian R, Pal D, Sordella R. The evolution of TP53 mutations: from loss-of-function to separation-of-function mutants. J Cancer Biol Res. 2016;4(4):1091.PubMedPubMedCentral
52.
go back to reference Smeby J, Sveen A, Eilertsen IA, Danielsen SA, Hoff AM, Eide PW, et al. Transcriptional and functional consequences of TP53 splice mutations in colorectal cancer. Oncogenesis. 2019;8:35.PubMedPubMedCentralCrossRef Smeby J, Sveen A, Eilertsen IA, Danielsen SA, Hoff AM, Eide PW, et al. Transcriptional and functional consequences of TP53 splice mutations in colorectal cancer. Oncogenesis. 2019;8:35.PubMedPubMedCentralCrossRef
53.
go back to reference Pinto EM, Maxwell KN, Halalsheh H, Phillips A, Powers J, MacFarland S, et al. Clinical and functional significance of TP53 exon 4-Intron 4 Splice Junction Variants. Mol Cancer Res. 2022;20(2):207–16.PubMedCrossRef Pinto EM, Maxwell KN, Halalsheh H, Phillips A, Powers J, MacFarland S, et al. Clinical and functional significance of TP53 exon 4-Intron 4 Splice Junction Variants. Mol Cancer Res. 2022;20(2):207–16.PubMedCrossRef
54.
go back to reference Shirole NH, Pal D, Kastenhuber ER, Senturk S, Boroda J, Pisterzi P, et al. TP53 exon-6 truncating mutations produce separation of function isoforms with pro-tumorigenic functions. eLife. 2016;5:e17929.PubMedPubMedCentralCrossRef Shirole NH, Pal D, Kastenhuber ER, Senturk S, Boroda J, Pisterzi P, et al. TP53 exon-6 truncating mutations produce separation of function isoforms with pro-tumorigenic functions. eLife. 2016;5:e17929.PubMedPubMedCentralCrossRef
55.
go back to reference Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16(4):253–64.PubMedCrossRef Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16(4):253–64.PubMedCrossRef
56.
57.
59.
go back to reference Zhang H, Fan SJ, Prochownik EV. Distinct roles for MAX protein isoforms in proliferation and apoptosis. J Biol Chem. 1997;272(28):17416–24.PubMedCrossRef Zhang H, Fan SJ, Prochownik EV. Distinct roles for MAX protein isoforms in proliferation and apoptosis. J Biol Chem. 1997;272(28):17416–24.PubMedCrossRef
60.
go back to reference Arsura M, Deshpande A, Hann SR, Sonenshein GE. Variant Max protein, derived by alternative splicing, associates with C-Myc in-vivo and inhibits transactivation. Mol Cell Biol. 1995;15(12):6702–9.PubMedPubMedCentralCrossRef Arsura M, Deshpande A, Hann SR, Sonenshein GE. Variant Max protein, derived by alternative splicing, associates with C-Myc in-vivo and inhibits transactivation. Mol Cell Biol. 1995;15(12):6702–9.PubMedPubMedCentralCrossRef
61.
go back to reference Mäkelä TP, Koskinen PJ, Vastrik I, Alitalo K. Alternative forms of Max as Enhancers or Suppressors of myc-ras Cotransformation. Science. 1992;256(5055):373–7.PubMedCrossRef Mäkelä TP, Koskinen PJ, Vastrik I, Alitalo K. Alternative forms of Max as Enhancers or Suppressors of myc-ras Cotransformation. Science. 1992;256(5055):373–7.PubMedCrossRef
62.
go back to reference Kemmerer K, Weigand JE. Hypoxia reduces MAX expression in endothelial cells by unproductive splicing. FEBS Lett. 2014;588(24):4784–90.PubMedCrossRef Kemmerer K, Weigand JE. Hypoxia reduces MAX expression in endothelial cells by unproductive splicing. FEBS Lett. 2014;588(24):4784–90.PubMedCrossRef
63.
go back to reference Ngo T, Corrales A, Bourne T, Elmojahid S, Lam KS, Díaz E. Alternative splicing of MXD3 and its regulation of MXD3 levels in Glioblastoma. Front Mol Biosci. 2019;6:5.PubMedPubMedCentralCrossRef Ngo T, Corrales A, Bourne T, Elmojahid S, Lam KS, Díaz E. Alternative splicing of MXD3 and its regulation of MXD3 levels in Glioblastoma. Front Mol Biosci. 2019;6:5.PubMedPubMedCentralCrossRef
64.
66.
67.
go back to reference Furukawa M, Xiong Y. BTB protein keap1 targets antioxidant transcription factor nrf2 for ubiquitination by the cullin 3-Roc1 ligase. Mol Cell Biol. 2005;25(1):162–71.PubMedPubMedCentralCrossRef Furukawa M, Xiong Y. BTB protein keap1 targets antioxidant transcription factor nrf2 for ubiquitination by the cullin 3-Roc1 ligase. Mol Cell Biol. 2005;25(1):162–71.PubMedPubMedCentralCrossRef
68.
go back to reference Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24(24):10941–53.PubMedPubMedCentralCrossRef Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24(24):10941–53.PubMedPubMedCentralCrossRef
69.
go back to reference Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate for proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24(16):7130–9.PubMedPubMedCentralCrossRef Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate for proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24(16):7130–9.PubMedPubMedCentralCrossRef
70.
go back to reference Cullinan SB, Gordan JD, Jin JO, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004;24(19):8477–86.PubMedPubMedCentralCrossRef Cullinan SB, Gordan JD, Jin JO, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004;24(19):8477–86.PubMedPubMedCentralCrossRef
71.
go back to reference Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal. 2010;13(11):1713–48.PubMedCrossRef Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal. 2010;13(11):1713–48.PubMedCrossRef
72.
go back to reference Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2 small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.PubMedCrossRef Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2 small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.PubMedCrossRef
74.
go back to reference Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233–60.PubMedCrossRef Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233–60.PubMedCrossRef
75.
go back to reference Yamamoto T, Kyo M, Kamiya T, Tanaka T, Engel JD, Motohashi H, et al. Predictive base substitution rules that determine the binding and transcriptional specificity of maf recognition elements. Genes Cells. 2006;11(6):575–91.PubMedCrossRef Yamamoto T, Kyo M, Kamiya T, Tanaka T, Engel JD, Motohashi H, et al. Predictive base substitution rules that determine the binding and transcriptional specificity of maf recognition elements. Genes Cells. 2006;11(6):575–91.PubMedCrossRef
76.
go back to reference Li W, Yu S, Liu T, Kim JH, Blank V, Li H, et al. Heterodimerization with small maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif. Biochim Biophys Acta. 2008;1783(10):1847–56.PubMedPubMedCentralCrossRef Li W, Yu S, Liu T, Kim JH, Blank V, Li H, et al. Heterodimerization with small maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif. Biochim Biophys Acta. 2008;1783(10):1847–56.PubMedPubMedCentralCrossRef
77.
go back to reference Goldstein LD, Lee J, Gnad F, Klijn C, Schaub A, Reeder J, et al. Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep. 2016;16(10):2605–17.PubMedCrossRef Goldstein LD, Lee J, Gnad F, Klijn C, Schaub A, Reeder J, et al. Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep. 2016;16(10):2605–17.PubMedCrossRef
79.
go back to reference Qiu L, Wang M, Zhu YP, Xiang YC, Zhang YG. A Naturally-Occurring Dominant-Negative inhibitor of Keap1 competitively against its negative regulation of Nrf2. Int J Mol Sci. 2018;19(8):2150.PubMedPubMedCentralCrossRef Qiu L, Wang M, Zhu YP, Xiang YC, Zhang YG. A Naturally-Occurring Dominant-Negative inhibitor of Keap1 competitively against its negative regulation of Nrf2. Int J Mol Sci. 2018;19(8):2150.PubMedPubMedCentralCrossRef
80.
go back to reference Jiang NN, Dai QJ, Su XR, Fu JJ, Feng XC, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep. 2020;47(6):4587–629.PubMedPubMedCentralCrossRef Jiang NN, Dai QJ, Su XR, Fu JJ, Feng XC, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep. 2020;47(6):4587–629.PubMedPubMedCentralCrossRef
82.
go back to reference Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95(1):29–39.PubMedCrossRef Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95(1):29–39.PubMedCrossRef
83.
go back to reference Brognard J, Sierecki E, Gao TY, Newton AC. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of akt signaling by regulating distinct akt isoforms. Mol Cell. 2007;25(6):917–31.PubMedCrossRef Brognard J, Sierecki E, Gao TY, Newton AC. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of akt signaling by regulating distinct akt isoforms. Mol Cell. 2007;25(6):917–31.PubMedCrossRef
84.
go back to reference Andjelković M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A. 1996;93(12):5699–704.PubMedPubMedCentralCrossRef Andjelković M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A. 1996;93(12):5699–704.PubMedPubMedCentralCrossRef
85.
go back to reference LoPiccolo J, Kim SJ, Shi Y, Wu B, Wu HY, Chait BT, et al. Assembly and Molecular Architecture of the phosphoinositide 3-Kinase p85α Homodimer. J Biol Chem. 2015;290(51):30390–405.PubMedPubMedCentralCrossRef LoPiccolo J, Kim SJ, Shi Y, Wu B, Wu HY, Chait BT, et al. Assembly and Molecular Architecture of the phosphoinositide 3-Kinase p85α Homodimer. J Biol Chem. 2015;290(51):30390–405.PubMedPubMedCentralCrossRef
86.
go back to reference Harpur AG, Layton MJ, Das P, Bottomley MJ, Panayotou G, Driscoll PC, et al. Intermolecular interactions of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. J Biol Chem. 1999;274(18):12323–32.PubMedCrossRef Harpur AG, Layton MJ, Das P, Bottomley MJ, Panayotou G, Driscoll PC, et al. Intermolecular interactions of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. J Biol Chem. 1999;274(18):12323–32.PubMedCrossRef
87.
go back to reference Cheung LWT, Walkiewicz KW, Besong TMD, Guo HF, Hawke DH, Arold ST, et al. Regulation of the PI3K pathway through a p85α monomer-homodimer equilibrium. eLife. 2015;4:e06866.PubMedPubMedCentralCrossRef Cheung LWT, Walkiewicz KW, Besong TMD, Guo HF, Hawke DH, Arold ST, et al. Regulation of the PI3K pathway through a p85α monomer-homodimer equilibrium. eLife. 2015;4:e06866.PubMedPubMedCentralCrossRef
88.
go back to reference Abell K, Bilancio A, Clarkson RWE, Tiffen PG, Altaparmakov AI, Burdon TG, et al. Stat3-induced apoptosis requires a molecular switch in PI(3)K subunit composition. Nat Cell Biol. 2005;7(4):392–8.PubMedCrossRef Abell K, Bilancio A, Clarkson RWE, Tiffen PG, Altaparmakov AI, Burdon TG, et al. Stat3-induced apoptosis requires a molecular switch in PI(3)K subunit composition. Nat Cell Biol. 2005;7(4):392–8.PubMedCrossRef
89.
go back to reference Lucas CL, Zhang Y, Venida A, Wang Y, Hughes J, McElwee J, et al. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med. 2014;211(13):2537–47.PubMedPubMedCentralCrossRef Lucas CL, Zhang Y, Venida A, Wang Y, Hughes J, McElwee J, et al. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med. 2014;211(13):2537–47.PubMedPubMedCentralCrossRef
90.
go back to reference Deau MC, Heurtier L, Frange P, Suarez F, Bole-Feysot C, Nitschke P, et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest. 2014;124(9):3923–8.PubMedPubMedCentralCrossRef Deau MC, Heurtier L, Frange P, Suarez F, Bole-Feysot C, Nitschke P, et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest. 2014;124(9):3923–8.PubMedPubMedCentralCrossRef
91.
go back to reference Abolhassani H, Aghamohammadi A, Fang MY, Rezaei N, Jiang CY, Liu X, et al. Clinical implications of systematic phenotyping and exome sequencing in patients with primary antibody deficiency. Genet Med. 2019;21(1):243–51.PubMedCrossRef Abolhassani H, Aghamohammadi A, Fang MY, Rezaei N, Jiang CY, Liu X, et al. Clinical implications of systematic phenotyping and exome sequencing in patients with primary antibody deficiency. Genet Med. 2019;21(1):243–51.PubMedCrossRef
92.
go back to reference Hauck F, Magg T, Krolo A, Bilic I, Hirschmugl T, Laass M, et al. Variant PIK3R1 Hypermorphic Mutation and clinical phenotypes in a family with short statures, mild immunodeficiency and lymphoma. Klin Padiatr. 2017;229(3):113–7.PubMedCrossRef Hauck F, Magg T, Krolo A, Bilic I, Hirschmugl T, Laass M, et al. Variant PIK3R1 Hypermorphic Mutation and clinical phenotypes in a family with short statures, mild immunodeficiency and lymphoma. Klin Padiatr. 2017;229(3):113–7.PubMedCrossRef
93.
go back to reference Olbrich P, Lorenz M, Daball PC, Lucena JM, Rensing-Ehl A, Sanchez B, et al. Activated PI3Kδ syndrome type 2: two patients, a novel mutation, and review of the literature. Pediatr Allergy Immunol. 2016;27(6):640–4.PubMedCrossRef Olbrich P, Lorenz M, Daball PC, Lucena JM, Rensing-Ehl A, Sanchez B, et al. Activated PI3Kδ syndrome type 2: two patients, a novel mutation, and review of the literature. Pediatr Allergy Immunol. 2016;27(6):640–4.PubMedCrossRef
94.
go back to reference Lougaris V, Faletra F, Lanzi G, Vozzi D, Marcuzzi A, Valencic E, et al. Altered germinal center reaction and abnormal B cell peripheral maturation in PI3KR1-mutated patients presenting with HIGM-like phenotype. Clin Immunol. 2015;159(1):33–6.PubMedCrossRef Lougaris V, Faletra F, Lanzi G, Vozzi D, Marcuzzi A, Valencic E, et al. Altered germinal center reaction and abnormal B cell peripheral maturation in PI3KR1-mutated patients presenting with HIGM-like phenotype. Clin Immunol. 2015;159(1):33–6.PubMedCrossRef
95.
go back to reference Elkaim E, Neven B, Bruneau J, Mitsui-Sekinaka K, Stanislas A, Heurtier L, et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase delta syndrome 2: a cohort study. J Allergy Clin Immunol. 2016;138(1):210–8.PubMedCrossRef Elkaim E, Neven B, Bruneau J, Mitsui-Sekinaka K, Stanislas A, Heurtier L, et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase delta syndrome 2: a cohort study. J Allergy Clin Immunol. 2016;138(1):210–8.PubMedCrossRef
96.
go back to reference Breuksch I, Welter J, Bauer HK, Enklaar T, Frees S, Thüroff JW, et al. In renal cell carcinoma the PTEN splice variant PTEN-∆ shows similar function as the tumor suppressor PTEN itself. Cell Commun Signal. 2018;16:35.PubMedPubMedCentralCrossRef Breuksch I, Welter J, Bauer HK, Enklaar T, Frees S, Thüroff JW, et al. In renal cell carcinoma the PTEN splice variant PTEN-∆ shows similar function as the tumor suppressor PTEN itself. Cell Commun Signal. 2018;16:35.PubMedPubMedCentralCrossRef
97.
go back to reference Sharrard RM, Maitland NJ. Alternative splicing of the human PTEN/MMAC1/TEP1 gene. Biochim Biophys Acta. 2000;1494(3):282–5.PubMedCrossRef Sharrard RM, Maitland NJ. Alternative splicing of the human PTEN/MMAC1/TEP1 gene. Biochim Biophys Acta. 2000;1494(3):282–5.PubMedCrossRef
98.
go back to reference Agrawal S, Eng C. Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer. Hum Mol Genet. 2006;15(5):777–87.PubMedCrossRef Agrawal S, Eng C. Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer. Hum Mol Genet. 2006;15(5):777–87.PubMedCrossRef
99.
go back to reference Chen HJ, Romigh T, Sesock K, Eng C. Characterization of cryptic splicing in germline PTEN intronic variants in Cowden syndrome. Hum Mutat. 2017;38(10):1372–7.PubMedPubMedCentralCrossRef Chen HJ, Romigh T, Sesock K, Eng C. Characterization of cryptic splicing in germline PTEN intronic variants in Cowden syndrome. Hum Mutat. 2017;38(10):1372–7.PubMedPubMedCentralCrossRef
100.
go back to reference Celebi JT, Wanner M, Ping XL, Zhang H, Peacocke M. Association of splicing defects in PTEN leading to exon skipping or partial intron retention in Cowden syndrome. Hum Genet. 2000;107(3):234–8.PubMedCrossRef Celebi JT, Wanner M, Ping XL, Zhang H, Peacocke M. Association of splicing defects in PTEN leading to exon skipping or partial intron retention in Cowden syndrome. Hum Genet. 2000;107(3):234–8.PubMedCrossRef
102.
go back to reference Hartung AM, Swensen J, Uriz IE, Lapin M, Kristjansdottir K, Petersen USS, et al. The splicing efficiency of activating HRAS mutations can determine Costello Syndrome phenotype and frequency in Cancer. PLOS Genet. 2016;12(5):e1006039.PubMedPubMedCentralCrossRef Hartung AM, Swensen J, Uriz IE, Lapin M, Kristjansdottir K, Petersen USS, et al. The splicing efficiency of activating HRAS mutations can determine Costello Syndrome phenotype and frequency in Cancer. PLOS Genet. 2016;12(5):e1006039.PubMedPubMedCentralCrossRef
103.
go back to reference Pells S, Divjak M, Romanowski P, Impey H, Hawkins NJ, Clarke AR, et al. Developmentally-regulated expression of murine K-ras isoforms. Oncogene. 1997;15(15):1781–6.PubMedCrossRef Pells S, Divjak M, Romanowski P, Impey H, Hawkins NJ, Clarke AR, et al. Developmentally-regulated expression of murine K-ras isoforms. Oncogene. 1997;15(15):1781–6.PubMedCrossRef
104.
go back to reference Wang Y, You M, Wang Y. Alternative splicing of the K-ras gene in mouse tissues and cell lines. Exp Lung Res. 2001;27(3):255–67.PubMedCrossRef Wang Y, You M, Wang Y. Alternative splicing of the K-ras gene in mouse tissues and cell lines. Exp Lung Res. 2001;27(3):255–67.PubMedCrossRef
105.
go back to reference Laude AJ, Prior IA. Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain. J Cell Sci. 2008;121(4):421–7.PubMedCrossRef Laude AJ, Prior IA. Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain. J Cell Sci. 2008;121(4):421–7.PubMedCrossRef
106.
go back to reference Tsai FD, Lopes MS, Zhou M, Court H, Ponce O, Fiordalisi JJ, et al. K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proc Natl Acad Sci U S A. 2015;112(3):779–84.PubMedPubMedCentralCrossRef Tsai FD, Lopes MS, Zhou M, Court H, Ponce O, Fiordalisi JJ, et al. K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proc Natl Acad Sci U S A. 2015;112(3):779–84.PubMedPubMedCentralCrossRef
107.
go back to reference Chen WC, To MD, Westcott PMK, Delrosario R, Kim IJ, Philips M, et al. Targeting KRAS4A splicing through the RBM39/DCAF15 pathway inhibits cancer stem cells. Nat Commun. 2021;12(1):4288.PubMedPubMedCentralCrossRef Chen WC, To MD, Westcott PMK, Delrosario R, Kim IJ, Philips M, et al. Targeting KRAS4A splicing through the RBM39/DCAF15 pathway inhibits cancer stem cells. Nat Commun. 2021;12(1):4288.PubMedPubMedCentralCrossRef
108.
go back to reference Eilertsen IA, Sveen A, Strømme JM, Skotheim RI, Nesbakken A, Lothe RA. Alternative splicing expands the prognostic impact of KRAS in microsatellite stable primary colorectal cancer. Int J Cancer. 2019;144(4):841–7.PubMedCrossRef Eilertsen IA, Sveen A, Strømme JM, Skotheim RI, Nesbakken A, Lothe RA. Alternative splicing expands the prognostic impact of KRAS in microsatellite stable primary colorectal cancer. Int J Cancer. 2019;144(4):841–7.PubMedCrossRef
109.
go back to reference Eisfeld AK, Schwind S, Hoag KW, Walker CJ, Liyanarachchi S, Patel R, et al. NRAS isoforms differentially affect downstream pathways, cell growth, and cell transformation. Proc Natl Acad Sci U S A. 2014;111(11):4179–84.PubMedPubMedCentralCrossRef Eisfeld AK, Schwind S, Hoag KW, Walker CJ, Liyanarachchi S, Patel R, et al. NRAS isoforms differentially affect downstream pathways, cell growth, and cell transformation. Proc Natl Acad Sci U S A. 2014;111(11):4179–84.PubMedPubMedCentralCrossRef
110.
go back to reference Endo T. Dominant-negative antagonists of the Ras-ERK pathway: DA-Raf and its related proteins generated by alternative splicing of Raf. Exp Cell Res. 2020;387(2). Endo T. Dominant-negative antagonists of the Ras-ERK pathway: DA-Raf and its related proteins generated by alternative splicing of Raf. Exp Cell Res. 2020;387(2).
111.
go back to reference Yokoyama T, Takano K, Yoshida A, Katada F, Sun P, Takenawa T, et al. DA-Raf1, a competent intrinsic dominant-negative antagonist of the Ras-ERK pathway, is required for myogenic differentiation. J Cell Biol. 2007;177(5):781–93.PubMedPubMedCentralCrossRef Yokoyama T, Takano K, Yoshida A, Katada F, Sun P, Takenawa T, et al. DA-Raf1, a competent intrinsic dominant-negative antagonist of the Ras-ERK pathway, is required for myogenic differentiation. J Cell Biol. 2007;177(5):781–93.PubMedPubMedCentralCrossRef
113.
go back to reference Uniacke J, Holterman CE, Lachance G, Franovic A, Jacob MD, Fabian MR, et al. An oxygen-regulated switch in the protein synthesis machinery. Nature. 2012;486(7401):126–9.PubMedPubMedCentralCrossRef Uniacke J, Holterman CE, Lachance G, Franovic A, Jacob MD, Fabian MR, et al. An oxygen-regulated switch in the protein synthesis machinery. Nature. 2012;486(7401):126–9.PubMedPubMedCentralCrossRef
114.
go back to reference Wang Y, Ma M, Xiao XS, Wang ZF. Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nat Struct Mol Biol. 2012;19(10):1044–52.PubMedPubMedCentralCrossRef Wang Y, Ma M, Xiao XS, Wang ZF. Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nat Struct Mol Biol. 2012;19(10):1044–52.PubMedPubMedCentralCrossRef
115.
go back to reference Wang Y, Chen D, Qian HL, Tsai YHS, Shao SJ, Liu QT, et al. The splicing factor RBM4 controls apoptosis, proliferation, and Migration to suppress Tumor Progression. Cancer Cell. 2014;26(3):374–89.PubMedPubMedCentralCrossRef Wang Y, Chen D, Qian HL, Tsai YHS, Shao SJ, Liu QT, et al. The splicing factor RBM4 controls apoptosis, proliferation, and Migration to suppress Tumor Progression. Cancer Cell. 2014;26(3):374–89.PubMedPubMedCentralCrossRef
116.
go back to reference Wang WY, Quan WL, Yang F, Wei YX, Chen JJ, Yu H, et al. RBM4 modulates the proliferation and expression of inflammatory factors via the alternative splicing of regulatory factors in HeLa cells. Mol Genet Genomics. 2020;295(1):95–106.PubMedCrossRef Wang WY, Quan WL, Yang F, Wei YX, Chen JJ, Yu H, et al. RBM4 modulates the proliferation and expression of inflammatory factors via the alternative splicing of regulatory factors in HeLa cells. Mol Genet Genomics. 2020;295(1):95–106.PubMedCrossRef
117.
go back to reference Yong HM, Zhao W, Zhou XY, Liu ZY, Tang Q, Shi HC, et al. RNA-Binding motif 4 (RBM4) suppresses Tumor Growth and Metastasis in Human gastric Cancer. Med Sci Monit. 2019;25:4025–34.PubMedPubMedCentralCrossRef Yong HM, Zhao W, Zhou XY, Liu ZY, Tang Q, Shi HC, et al. RNA-Binding motif 4 (RBM4) suppresses Tumor Growth and Metastasis in Human gastric Cancer. Med Sci Monit. 2019;25:4025–34.PubMedPubMedCentralCrossRef
118.
go back to reference Rbm4-Regulated Alternative Splicing Suppresses Tumorigenesis. Cancer Discov. 2014;4(11):1253. Rbm4-Regulated Alternative Splicing Suppresses Tumorigenesis. Cancer Discov. 2014;4(11):1253.
120.
go back to reference Anczuków O, Rosenberg AZ, Akerman M, Das S, Zhan LX, Karni R, et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol. 2012;19(2):220–8.PubMedPubMedCentralCrossRef Anczuków O, Rosenberg AZ, Akerman M, Das S, Zhan LX, Karni R, et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol. 2012;19(2):220–8.PubMedPubMedCentralCrossRef
121.
122.
go back to reference Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14(3):185–93.PubMedPubMedCentralCrossRef Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14(3):185–93.PubMedPubMedCentralCrossRef
123.
go back to reference Yong HM, Zhu HJ, Zhang S, Zhao W, Wang W, Chen C, et al. Prognostic value of decreased expression of RBM4 in human gastric cancer. Sci Rep. 2016;6:28222.PubMedPubMedCentralCrossRef Yong HM, Zhu HJ, Zhang S, Zhao W, Wang W, Chen C, et al. Prognostic value of decreased expression of RBM4 in human gastric cancer. Sci Rep. 2016;6:28222.PubMedPubMedCentralCrossRef
124.
go back to reference Lewis HA, Musunuru K, Jensen KB, Edo C, Chen H, Darnell RB, et al. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell. 2000;100(3):323–32.PubMedCrossRef Lewis HA, Musunuru K, Jensen KB, Edo C, Chen H, Darnell RB, et al. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell. 2000;100(3):323–32.PubMedCrossRef
125.
go back to reference Jensen KB, Dredge BK, Stefani G, Zhong R, Buckanovich RJ, Okano HJ, et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron. 2000;25(2):359–71.PubMedCrossRef Jensen KB, Dredge BK, Stefani G, Zhong R, Buckanovich RJ, Okano HJ, et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron. 2000;25(2):359–71.PubMedCrossRef
126.
go back to reference Buckanovich RJ, Darnell RB. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol Cell Biol. 1997;17(6):3194–201.PubMedPubMedCentralCrossRef Buckanovich RJ, Darnell RB. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol Cell Biol. 1997;17(6):3194–201.PubMedPubMedCentralCrossRef
127.
go back to reference Raj B, Blencowe BJ. Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron. 2015;87(1):14–27.PubMedCrossRef Raj B, Blencowe BJ. Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron. 2015;87(1):14–27.PubMedCrossRef
129.
go back to reference Buckanovich RJ, Yang YYL, Darnell RB. The onconeural antigen Nova-1 is a neuron-specific RNA-Binding protein, the activity of which is inhibited by paraneoplastic antibodies. J Neurosci. 1996;16(3):1114–22.PubMedPubMedCentralCrossRef Buckanovich RJ, Yang YYL, Darnell RB. The onconeural antigen Nova-1 is a neuron-specific RNA-Binding protein, the activity of which is inhibited by paraneoplastic antibodies. J Neurosci. 1996;16(3):1114–22.PubMedPubMedCentralCrossRef
130.
go back to reference Buckanovich RJ, Posner JB, Darnell RB. Nova, the Paraneoplastic Ri Antigen, is homologous to an rna-binding protein and is specifically expressed in the developing Motor System. Neuron. 1993;11(4):657–72.PubMedCrossRef Buckanovich RJ, Posner JB, Darnell RB. Nova, the Paraneoplastic Ri Antigen, is homologous to an rna-binding protein and is specifically expressed in the developing Motor System. Neuron. 1993;11(4):657–72.PubMedCrossRef
131.
go back to reference Yoon SO, Kim EK, Lee M, Jung WY, Lee H, Kang Y, et al. NOVA1 inhibition by miR-146b-5p in the remnant tissue microenvironment defines occult residual disease after gastric cancer removal. Oncotarget. 2016;7(3):2475–95.PubMedCrossRef Yoon SO, Kim EK, Lee M, Jung WY, Lee H, Kang Y, et al. NOVA1 inhibition by miR-146b-5p in the remnant tissue microenvironment defines occult residual disease after gastric cancer removal. Oncotarget. 2016;7(3):2475–95.PubMedCrossRef
132.
go back to reference Kim E, Yoon SO, Jung WY, Lee H, Kang Y, Jang YJ, et al. Implications of NOVA1 suppression within the microenvironment of gastric cancer: association with immune cell dysregulation. Gastric Cancer. 2017;20(3):438–47.PubMedCrossRef Kim E, Yoon SO, Jung WY, Lee H, Kang Y, Jang YJ, et al. Implications of NOVA1 suppression within the microenvironment of gastric cancer: association with immune cell dysregulation. Gastric Cancer. 2017;20(3):438–47.PubMedCrossRef
133.
go back to reference Shen B, Zhang Y, Yu SR, Yuan Y, Zhong YJ, Lu JW, et al. MicroRNA-339, an epigenetic modulating target is involved in human gastric carcinogenesis through targeting NOVA1. FEBS Lett. 2015;589(20):3205–11.PubMedCrossRef Shen B, Zhang Y, Yu SR, Yuan Y, Zhong YJ, Lu JW, et al. MicroRNA-339, an epigenetic modulating target is involved in human gastric carcinogenesis through targeting NOVA1. FEBS Lett. 2015;589(20):3205–11.PubMedCrossRef
134.
go back to reference Zhi F, Wang Q, Deng DN, Shao NY, Wang R, Xue L, et al. MiR-181b-5p downregulates NOVA1 to suppress Proliferation, Migration and Invasion and promote apoptosis in Astrocytoma. PLoS ONE. 2014;9(10):e109124.PubMedPubMedCentralCrossRef Zhi F, Wang Q, Deng DN, Shao NY, Wang R, Xue L, et al. MiR-181b-5p downregulates NOVA1 to suppress Proliferation, Migration and Invasion and promote apoptosis in Astrocytoma. PLoS ONE. 2014;9(10):e109124.PubMedPubMedCentralCrossRef
135.
go back to reference Zhang YA, Zhu JM, Yin J, Tang WQ, Guo YM, Shen XZ, et al. High expression of neuro-oncological ventral Antigen 1 correlates with poor prognosis in Hepatocellular Carcinoma. PLoS ONE. 2014;9(3):e90955.PubMedPubMedCentralCrossRef Zhang YA, Zhu JM, Yin J, Tang WQ, Guo YM, Shen XZ, et al. High expression of neuro-oncological ventral Antigen 1 correlates with poor prognosis in Hepatocellular Carcinoma. PLoS ONE. 2014;9(3):e90955.PubMedPubMedCentralCrossRef
136.
137.
go back to reference Dredge BK, Darnell RB. Nova regulates GABA(A) receptor gamma2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer. Mol Cell Biol. 2003;23(13):4687–700.PubMedPubMedCentralCrossRef Dredge BK, Darnell RB. Nova regulates GABA(A) receptor gamma2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer. Mol Cell Biol. 2003;23(13):4687–700.PubMedPubMedCentralCrossRef
138.
go back to reference Zhang YA, Liu HN, Zhu JM, Zhang DY, Shen XZ, Liu TT. RNA binding protein Nova1 promotes tumor growth in vivo and its potential mechanism as an oncogene may due to its interaction with GABA(A) receptor-gamma 2. J Biomed Sci. 2016;23:71.PubMedPubMedCentralCrossRef Zhang YA, Liu HN, Zhu JM, Zhang DY, Shen XZ, Liu TT. RNA binding protein Nova1 promotes tumor growth in vivo and its potential mechanism as an oncogene may due to its interaction with GABA(A) receptor-gamma 2. J Biomed Sci. 2016;23:71.PubMedPubMedCentralCrossRef
139.
140.
go back to reference Ludlow AT, Wong MS, Robin JD, Batten K, Yuan L, Lai TP, et al. NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer. Nat Commun. 2018;9:3112.PubMedPubMedCentralCrossRef Ludlow AT, Wong MS, Robin JD, Batten K, Yuan L, Lai TP, et al. NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer. Nat Commun. 2018;9:3112.PubMedPubMedCentralCrossRef
141.
go back to reference Hong YG, Xu GS, Yu GY, Zhou JD, Liu QZ, Ni JS, et al. The RNA binding protein neuro-oncological ventral antigen 1 (NOVA1) regulates IL-6 mRNA stability to enhance JAK2-STAT3 signaling in CRC. Surg Oncol. 2019;31:67–74.PubMedCrossRef Hong YG, Xu GS, Yu GY, Zhou JD, Liu QZ, Ni JS, et al. The RNA binding protein neuro-oncological ventral antigen 1 (NOVA1) regulates IL-6 mRNA stability to enhance JAK2-STAT3 signaling in CRC. Surg Oncol. 2019;31:67–74.PubMedCrossRef
143.
go back to reference Cretu C, Schmitzová J, Ponce-Salvatierra A, Dybkov O, De Laurentiis EI, Sharma K, et al. Molecular Architecture of SF3b and Structural Consequences of its Cancer-related mutations. Mol Cell. 2016;64(2):307–19.PubMedCrossRef Cretu C, Schmitzová J, Ponce-Salvatierra A, Dybkov O, De Laurentiis EI, Sharma K, et al. Molecular Architecture of SF3b and Structural Consequences of its Cancer-related mutations. Mol Cell. 2016;64(2):307–19.PubMedCrossRef
144.
go back to reference Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.PubMedCrossRef Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.PubMedCrossRef
145.
go back to reference Song JM, Hussaini M, Qin DH, Zhang XH, Shao HP, Zhang L, et al. Comparison of SF381/DNMT3A comutations with DNMT3A or SF3B1 mutation alone in Myelodysplastic Syndrome and Clonal Cytopenia of undetermined significance. Am J Clin Pathol. 2020;154(1):48–56.PubMedCrossRef Song JM, Hussaini M, Qin DH, Zhang XH, Shao HP, Zhang L, et al. Comparison of SF381/DNMT3A comutations with DNMT3A or SF3B1 mutation alone in Myelodysplastic Syndrome and Clonal Cytopenia of undetermined significance. Am J Clin Pathol. 2020;154(1):48–56.PubMedCrossRef
146.
go back to reference Cazzola M, Rossi M, Malcovati L, Grp AIRC. Biologic and clinical significance of somatic mutations of SF3B1 in myeloid and lymphoid neoplasms. Blood. 2013;121(2):260–9.PubMedPubMedCentralCrossRef Cazzola M, Rossi M, Malcovati L, Grp AIRC. Biologic and clinical significance of somatic mutations of SF3B1 in myeloid and lymphoid neoplasms. Blood. 2013;121(2):260–9.PubMedPubMedCentralCrossRef
147.
148.
go back to reference Foy A, McMullin MF. Somatic SF3B1 mutations in myelodysplastic syndrome with ring sideroblasts and chronic lymphocytic leukaemia. J Clin Pathol. 2019;72(11):778–82.PubMedCrossRef Foy A, McMullin MF. Somatic SF3B1 mutations in myelodysplastic syndrome with ring sideroblasts and chronic lymphocytic leukaemia. J Clin Pathol. 2019;72(11):778–82.PubMedCrossRef
150.
go back to reference Tang AD, Soulette CM, van Baren MJ, Hart K, Hrabeta-Robinson E, Wu CJ, et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat Commun. 2020;11(1):1438.PubMedPubMedCentralCrossRef Tang AD, Soulette CM, van Baren MJ, Hart K, Hrabeta-Robinson E, Wu CJ, et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat Commun. 2020;11(1):1438.PubMedPubMedCentralCrossRef
151.
go back to reference Yu JF, Li YM, Li T, Li YF, Xing HZ, Sun H, et al. Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia. Exp Hematol Oncol. 2020;9(1):2.PubMedPubMedCentralCrossRef Yu JF, Li YM, Li T, Li YF, Xing HZ, Sun H, et al. Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia. Exp Hematol Oncol. 2020;9(1):2.PubMedPubMedCentralCrossRef
152.
153.
go back to reference Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9.PubMedPubMedCentralCrossRef Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9.PubMedPubMedCentralCrossRef
154.
go back to reference Ellis MJ, Ding L, Shen D, Luo JQ, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486(7403):353–60.PubMedPubMedCentralCrossRef Ellis MJ, Ding L, Shen D, Luo JQ, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486(7403):353–60.PubMedPubMedCentralCrossRef
155.
156.
go back to reference Küsters-Vandevelde HVN, Creytens D, van Engen-van Grunsven ACH, Jeunink M, Winnepenninckx V, Groenen PJTA, et al. SF3B1 and EIF1AX mutations occur in primary leptomeningeal melanocytic neoplasms; yet another similarity to uveal melanomas. Acta Neuropathol Commun. 2016;4:5.PubMedPubMedCentralCrossRef Küsters-Vandevelde HVN, Creytens D, van Engen-van Grunsven ACH, Jeunink M, Winnepenninckx V, Groenen PJTA, et al. SF3B1 and EIF1AX mutations occur in primary leptomeningeal melanocytic neoplasms; yet another similarity to uveal melanomas. Acta Neuropathol Commun. 2016;4:5.PubMedPubMedCentralCrossRef
158.
go back to reference Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.PubMedPubMedCentralCrossRef Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.PubMedPubMedCentralCrossRef
159.
go back to reference Armenia J, Wankowicz SAM, Liu D, Gao JJ, Kundra R, Reznik E, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2019;51(7):645–51.CrossRef Armenia J, Wankowicz SAM, Liu D, Gao JJ, Kundra R, Reznik E, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2019;51(7):645–51.CrossRef
160.
go back to reference Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis N, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. 2012;119(14):3211–8.PubMedCrossRef Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis N, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. 2012;119(14):3211–8.PubMedCrossRef
161.
go back to reference Patnaik MM, Lasho TL, Hodnefield JM, Knudson RA, Ketterling RP, Al-Kali A, et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with Ring Sideroblasts but do not hold independent Prognostic Value. Blood. 2012;119(2):569–72.PubMedPubMedCentralCrossRef Patnaik MM, Lasho TL, Hodnefield JM, Knudson RA, Ketterling RP, Al-Kali A, et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with Ring Sideroblasts but do not hold independent Prognostic Value. Blood. 2012;119(2):569–72.PubMedPubMedCentralCrossRef
162.
go back to reference Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N, et al. Validation of a Prognostic Model and the impact of mutations in patients with Lower-Risk Myelodysplastic Syndromes. J Clin Oncol. 2012;30(27):3376–82.PubMedPubMedCentralCrossRef Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N, et al. Validation of a Prognostic Model and the impact of mutations in patients with Lower-Risk Myelodysplastic Syndromes. J Clin Oncol. 2012;30(27):3376–82.PubMedPubMedCentralCrossRef
163.
go back to reference Zhou ZX, Gong Q, Wang Y, Li MK, Wang L, Ding HF, et al. The biological function and clinical significance of SF3B1 mutations in cancer. Biomark Res. 2020;8(1):38.PubMedPubMedCentralCrossRef Zhou ZX, Gong Q, Wang Y, Li MK, Wang L, Ding HF, et al. The biological function and clinical significance of SF3B1 mutations in cancer. Biomark Res. 2020;8(1):38.PubMedPubMedCentralCrossRef
164.
go back to reference Fuentes-Fayos AC, Perez-Gomez JM, G-Garcia ME, Jimenez-Vacas JM, Blanco-Acevedo C, Sanchez-Sanchez R, et al. SF3B1 inhibition disrupts malignancy and prolongs survival in glioblastoma patients through BCL2L1 splicing and mTOR/beta-catenin pathways imbalances. J Exp Clin Cancer Res. 2022;41(1):39.PubMedPubMedCentralCrossRef Fuentes-Fayos AC, Perez-Gomez JM, G-Garcia ME, Jimenez-Vacas JM, Blanco-Acevedo C, Sanchez-Sanchez R, et al. SF3B1 inhibition disrupts malignancy and prolongs survival in glioblastoma patients through BCL2L1 splicing and mTOR/beta-catenin pathways imbalances. J Exp Clin Cancer Res. 2022;41(1):39.PubMedPubMedCentralCrossRef
165.
go back to reference López-Cánovas JL, del Rio-Moreno M, García-Fernandez H, Jiménez-Vacas JM, Moreno-Montilla MT, Sánchez-Frias ME, et al. Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma. Cancer Lett. 2021;496:72–83.PubMedCrossRef López-Cánovas JL, del Rio-Moreno M, García-Fernandez H, Jiménez-Vacas JM, Moreno-Montilla MT, Sánchez-Frias ME, et al. Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma. Cancer Lett. 2021;496:72–83.PubMedCrossRef
166.
go back to reference Jiménez-Vacas JM, Herrero-Aguayo V, Gómez-Gómez E, León-González AJ, Sáez-Martínez P, Alors-Pérez E, et al. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer. Transl Res. 2019;212:89–103.PubMedCrossRef Jiménez-Vacas JM, Herrero-Aguayo V, Gómez-Gómez E, León-González AJ, Sáez-Martínez P, Alors-Pérez E, et al. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer. Transl Res. 2019;212:89–103.PubMedCrossRef
167.
go back to reference Popli P, Richters MM, Chadchan SB, Kim TH, Tycksen E, Griffith O, et al. Splicing factor SF3B1 promotes endometrial cancer progression via regulating KSR2 RNA maturation. Cell Death Dis. 2020;11(10):842.PubMedPubMedCentralCrossRef Popli P, Richters MM, Chadchan SB, Kim TH, Tycksen E, Griffith O, et al. Splicing factor SF3B1 promotes endometrial cancer progression via regulating KSR2 RNA maturation. Cell Death Dis. 2020;11(10):842.PubMedPubMedCentralCrossRef
168.
go back to reference Boise LH, González-García M, Postema CE, Ding LY, Lindsten T, Turka LA, et al. Bcl-X, a bcl-2-Related gene that functions as a Dominant Regulator of apoptotic cell-death. Cell. 1993;74(4):597–608.PubMedCrossRef Boise LH, González-García M, Postema CE, Ding LY, Lindsten T, Turka LA, et al. Bcl-X, a bcl-2-Related gene that functions as a Dominant Regulator of apoptotic cell-death. Cell. 1993;74(4):597–608.PubMedCrossRef
169.
go back to reference Trecesson SD, Souaze F, Basseville A, Bernard AC, Pecot J, Lopez J, et al. BCL-X-L directly modulates RAS signalling to favour cancer cell stemness. Nat Commun. 2017;8:1123.CrossRef Trecesson SD, Souaze F, Basseville A, Bernard AC, Pecot J, Lopez J, et al. BCL-X-L directly modulates RAS signalling to favour cancer cell stemness. Nat Commun. 2017;8:1123.CrossRef
170.
go back to reference Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol. 2007;3(9):570–5.PubMedCrossRef Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol. 2007;3(9):570–5.PubMedCrossRef
171.
go back to reference Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol. 2007;3(9):576–83.PubMedCrossRef Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol. 2007;3(9):576–83.PubMedCrossRef
172.
go back to reference Hasegawa M, Miura T, Kuzuya K, Inoue A, Ki SW, Horinouchi S, et al. Identification of SAP155 as the target of GEX1A (Herboxidiene), an Antitumor Natural product. ACS Chem Biol. 2011;6(3):229–33.PubMedCrossRef Hasegawa M, Miura T, Kuzuya K, Inoue A, Ki SW, Horinouchi S, et al. Identification of SAP155 as the target of GEX1A (Herboxidiene), an Antitumor Natural product. ACS Chem Biol. 2011;6(3):229–33.PubMedCrossRef
173.
go back to reference Xargay-Torrent S, López-Guerra M, Rosich L, Montraveta A, Roldán J, Rodríguez V, et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget. 2015;6(26):22734–49.PubMedPubMedCentralCrossRef Xargay-Torrent S, López-Guerra M, Rosich L, Montraveta A, Roldán J, Rodríguez V, et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget. 2015;6(26):22734–49.PubMedPubMedCentralCrossRef
174.
go back to reference Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24(4):497–504.PubMedPubMedCentralCrossRef Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24(4):497–504.PubMedPubMedCentralCrossRef
175.
go back to reference Steensma DP, Wermke M, Klimek VM, Greenberg PL, Font P, Komrokji RS, et al. Results of a clinical trial of H3B-8800, a Splicing Modulator, in patients with myelodysplastic syndromes (MDS), Acute Myeloid Leukemia (AML) or chronic myelomonocytic leukemia (CMML). Blood. 2019;134:673.CrossRef Steensma DP, Wermke M, Klimek VM, Greenberg PL, Font P, Komrokji RS, et al. Results of a clinical trial of H3B-8800, a Splicing Modulator, in patients with myelodysplastic syndromes (MDS), Acute Myeloid Leukemia (AML) or chronic myelomonocytic leukemia (CMML). Blood. 2019;134:673.CrossRef
176.
go back to reference Steensma DP, Wermke M, Klimek VM, Greenberg PL, Font P, Komrokji RS, et al. Phase I first-in-human dose escalation study of the oral SF3B1 modulator H3B-8800 in myeloid neoplasms. Leukemia. 2021;35(12):3542–50.PubMedPubMedCentralCrossRef Steensma DP, Wermke M, Klimek VM, Greenberg PL, Font P, Komrokji RS, et al. Phase I first-in-human dose escalation study of the oral SF3B1 modulator H3B-8800 in myeloid neoplasms. Leukemia. 2021;35(12):3542–50.PubMedPubMedCentralCrossRef
177.
go back to reference Champion-Arnaud P, Reed R. The Prespliceosome Components Sap-49 and Sap-145 interact in a Complex implicated in tethering U2-Snrnp to the Branch Site. Genes Dev. 1994;8(16):1974–83.PubMedCrossRef Champion-Arnaud P, Reed R. The Prespliceosome Components Sap-49 and Sap-145 interact in a Complex implicated in tethering U2-Snrnp to the Branch Site. Genes Dev. 1994;8(16):1974–83.PubMedCrossRef
179.
go back to reference Li YW, Diao YC, Wang ZX, Wang SR, Peng JL, Kong BH. The splicing factor SF3B4 drives proliferation and invasion in cervical cancer by regulating SPAG5. Cell Death Discov. 2022;8(1):326.PubMedPubMedCentralCrossRef Li YW, Diao YC, Wang ZX, Wang SR, Peng JL, Kong BH. The splicing factor SF3B4 drives proliferation and invasion in cervical cancer by regulating SPAG5. Cell Death Discov. 2022;8(1):326.PubMedPubMedCentralCrossRef
180.
go back to reference He J, Green AR, Li Y, Chan SYT, Liu DX. SPAG5: an emerging Oncogene. Trends Cancer. 2020;6(7):543–7.PubMedCrossRef He J, Green AR, Li Y, Chan SYT, Liu DX. SPAG5: an emerging Oncogene. Trends Cancer. 2020;6(7):543–7.PubMedCrossRef
181.
go back to reference Yang YF, Zhang MF, Tian QH, Fu J, Yang X, Zhang CZY, et al. SPAG5 interacts with CEP55 and exerts oncogenic activities via PI3K/AKT pathway in hepatocellular carcinoma. Mol Cancer. 2018;17:117.PubMedPubMedCentralCrossRef Yang YF, Zhang MF, Tian QH, Fu J, Yang X, Zhang CZY, et al. SPAG5 interacts with CEP55 and exerts oncogenic activities via PI3K/AKT pathway in hepatocellular carcinoma. Mol Cancer. 2018;17:117.PubMedPubMedCentralCrossRef
182.
go back to reference Liu HL, Hu JW, Wei R, Zhou LF, Pan H, Zhu HC, et al. SPAG5 promotes hepatocellular carcinoma progression by downregulating SCARA5 through modifying beta-catenin degradation. J Exp Clin Cancer Res. 2018;37:229.PubMedPubMedCentralCrossRef Liu HL, Hu JW, Wei R, Zhou LF, Pan H, Zhu HC, et al. SPAG5 promotes hepatocellular carcinoma progression by downregulating SCARA5 through modifying beta-catenin degradation. J Exp Clin Cancer Res. 2018;37:229.PubMedPubMedCentralCrossRef
183.
go back to reference Li M, Li AQ, Zhou SL, Lv H, Yang WT. SPAG5 upregulation contributes to enhanced c-MYC transcriptional activity via interaction with c-MYC binding protein in triple-negative breast cancer. J Hematol Oncol. 2019;12:14.PubMedPubMedCentralCrossRef Li M, Li AQ, Zhou SL, Lv H, Yang WT. SPAG5 upregulation contributes to enhanced c-MYC transcriptional activity via interaction with c-MYC binding protein in triple-negative breast cancer. J Hematol Oncol. 2019;12:14.PubMedPubMedCentralCrossRef
184.
go back to reference Canu V, Donzelli S, Sacconi A, Lo Sardo F, Pulito C, Bossel N, et al. Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation. Cell Death Differ. 2021;28(5):1493–511.PubMedCrossRef Canu V, Donzelli S, Sacconi A, Lo Sardo F, Pulito C, Bossel N, et al. Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation. Cell Death Differ. 2021;28(5):1493–511.PubMedCrossRef
185.
go back to reference Wong YH, Wu CC, Lin CL, Chen TS, Chang TH, Chen BS. Applying NGS data to find Evolutionary Network biomarkers from the early and late stages of Hepatocellular Carcinoma. BioMed Res Int. 2015;2015:2015.CrossRef Wong YH, Wu CC, Lin CL, Chen TS, Chang TH, Chen BS. Applying NGS data to find Evolutionary Network biomarkers from the early and late stages of Hepatocellular Carcinoma. BioMed Res Int. 2015;2015:2015.CrossRef
186.
go back to reference Xu WJ, Huang HX, Yu L, Cao LH. Meta-analysis of gene expression profiles indicates genes in spliceosome pathway are up-regulated in hepatocellular carcinoma (HCC). Med Oncol. 2015;32(4):96.PubMedCrossRef Xu WJ, Huang HX, Yu L, Cao LH. Meta-analysis of gene expression profiles indicates genes in spliceosome pathway are up-regulated in hepatocellular carcinoma (HCC). Med Oncol. 2015;32(4):96.PubMedCrossRef
187.
go back to reference Iguchi T, Komatsu H, Masuda T, Nambara S, Kidogami S, Ogawa Y, et al. Increased Copy Number of the Gene Encoding SF3B4 indicates poor prognosis in Hepatocellular Carcinoma. Anticancer Res. 2016;36(5):2139–44.PubMed Iguchi T, Komatsu H, Masuda T, Nambara S, Kidogami S, Ogawa Y, et al. Increased Copy Number of the Gene Encoding SF3B4 indicates poor prognosis in Hepatocellular Carcinoma. Anticancer Res. 2016;36(5):2139–44.PubMed
188.
go back to reference Shen Q, Eun JW, Lee K, Kim HS, Yang HD, Kim SY, et al. Barrier to autointegration factor 1, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3, and splicing factor 3b subunit 4 as early-stage cancer decision markers and drivers of hepatocellular carcinoma. Hepatology. 2018;67(4):1360–77.PubMedCrossRef Shen Q, Eun JW, Lee K, Kim HS, Yang HD, Kim SY, et al. Barrier to autointegration factor 1, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3, and splicing factor 3b subunit 4 as early-stage cancer decision markers and drivers of hepatocellular carcinoma. Hepatology. 2018;67(4):1360–77.PubMedCrossRef
189.
go back to reference Bernier FP, Caluseriu O, Ng S, Schwartzentruber J, Buckingham KJ, Innes AM, et al. Haploinsufficiency of SF3B4, a component of the Pre-mRNA Spliceosomal Complex, causes Nager Syndrome. Am J Hum Genet. 2012;90(5):925–33.PubMedPubMedCentralCrossRef Bernier FP, Caluseriu O, Ng S, Schwartzentruber J, Buckingham KJ, Innes AM, et al. Haploinsufficiency of SF3B4, a component of the Pre-mRNA Spliceosomal Complex, causes Nager Syndrome. Am J Hum Genet. 2012;90(5):925–33.PubMedPubMedCentralCrossRef
190.
go back to reference McPherson E, Zaleski C, Ye Z, Lin S. Rodriguez syndrome with SF3B4 mutation: a severe form of Nager syndrome? Am J Med Genet A. 2014;164(7):1841–5.CrossRef McPherson E, Zaleski C, Ye Z, Lin S. Rodriguez syndrome with SF3B4 mutation: a severe form of Nager syndrome? Am J Med Genet A. 2014;164(7):1841–5.CrossRef
191.
go back to reference Devotta A, Juraver-Geslin H, Gonzalez JA, Hong CS, Saint-Jeannet JP. Sf3b4-depleted Xenopus embryos: a model to study the pathogenesis of craniofacial defects in Nager syndrome. Dev Biol. 2016;415(2):371–82.PubMedPubMedCentralCrossRef Devotta A, Juraver-Geslin H, Gonzalez JA, Hong CS, Saint-Jeannet JP. Sf3b4-depleted Xenopus embryos: a model to study the pathogenesis of craniofacial defects in Nager syndrome. Dev Biol. 2016;415(2):371–82.PubMedPubMedCentralCrossRef
192.
go back to reference Marques F, Tenney J, Duran I, Martin J, Nevarez L, Pogue R, et al. Altered mRNA splicing, Chondrocyte Gene expression and abnormal skeletal development due to SF3B4 mutations in Rodriguez Acrofacial Dysostosis. PLOS Genet. 2016;12(9):e1006307.PubMedPubMedCentralCrossRef Marques F, Tenney J, Duran I, Martin J, Nevarez L, Pogue R, et al. Altered mRNA splicing, Chondrocyte Gene expression and abnormal skeletal development due to SF3B4 mutations in Rodriguez Acrofacial Dysostosis. PLOS Genet. 2016;12(9):e1006307.PubMedPubMedCentralCrossRef
193.
go back to reference Diao YC, Li YW, Wang ZX, Wang SR, Li P, Kong BH. SF3B4 promotes ovarian cancer progression by regulating alternative splicing of RAD52. Cell Death Dis. 2022;13(2):179.PubMedPubMedCentralCrossRef Diao YC, Li YW, Wang ZX, Wang SR, Li P, Kong BH. SF3B4 promotes ovarian cancer progression by regulating alternative splicing of RAD52. Cell Death Dis. 2022;13(2):179.PubMedPubMedCentralCrossRef
194.
go back to reference Li P, Xu YZ, Zhang QL, Li Y, Jia WX, Wang X, et al. Evaluating the role of RAD52 and its interactors as novel potential molecular targets for hepatocellular carcinoma. Cancer Cell Int. 2019;19(1):279.PubMedPubMedCentralCrossRef Li P, Xu YZ, Zhang QL, Li Y, Jia WX, Wang X, et al. Evaluating the role of RAD52 and its interactors as novel potential molecular targets for hepatocellular carcinoma. Cancer Cell Int. 2019;19(1):279.PubMedPubMedCentralCrossRef
195.
go back to reference Lieberman R, Xiong DH, James M, Han YH, Amos CI, Wang L, et al. Functional characterization of RAD52 as a lung cancer susceptibility gene in the 12p13.33 locus. Mol Carcinog. 2016;55(5):953–63.PubMedCrossRef Lieberman R, Xiong DH, James M, Han YH, Amos CI, Wang L, et al. Functional characterization of RAD52 as a lung cancer susceptibility gene in the 12p13.33 locus. Mol Carcinog. 2016;55(5):953–63.PubMedCrossRef
196.
go back to reference Toma M, Sullivan-Reed K, Śliwiński T, Skorski T. RAD52 as a potential target for synthetic lethality-based Anticancer Therapies. Cancers. 2019;11(10):1561.PubMedPubMedCentralCrossRef Toma M, Sullivan-Reed K, Śliwiński T, Skorski T. RAD52 as a potential target for synthetic lethality-based Anticancer Therapies. Cancers. 2019;11(10):1561.PubMedPubMedCentralCrossRef
197.
go back to reference Kidogami S, Iguchi T, Sato K, Yoshikawa Y, Hu Q, Nambara S, et al. SF3B4 plays an oncogenic role in esophageal squamous cell carcinoma. Anticancer Res. 2020;40(5):2941–6.PubMedCrossRef Kidogami S, Iguchi T, Sato K, Yoshikawa Y, Hu Q, Nambara S, et al. SF3B4 plays an oncogenic role in esophageal squamous cell carcinoma. Anticancer Res. 2020;40(5):2941–6.PubMedCrossRef
198.
go back to reference Zhou WT, Ma N, Jiang H, Rong YF, Deng YZ, Feng YY, et al. SF3B4 is decreased in pancreatic cancer and inhibits the growth and migration of cancer cells. Tumour Biol. 2017;39(3):1010428317695913.PubMedCrossRef Zhou WT, Ma N, Jiang H, Rong YF, Deng YZ, Feng YY, et al. SF3B4 is decreased in pancreatic cancer and inhibits the growth and migration of cancer cells. Tumour Biol. 2017;39(3):1010428317695913.PubMedCrossRef
200.
201.
go back to reference Xiong J, Chen YS, Wang WP, Sun J. Biological function and molecular mechanism of SRSF3 in cancer and beyond. Oncol Lett. 2022;23(1):21.PubMedCrossRef Xiong J, Chen YS, Wang WP, Sun J. Biological function and molecular mechanism of SRSF3 in cancer and beyond. Oncol Lett. 2022;23(1):21.PubMedCrossRef
202.
go back to reference Huang YQ, Steitz JA. Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell. 2001;7(4):899–905.PubMedCrossRef Huang YQ, Steitz JA. Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell. 2001;7(4):899–905.PubMedCrossRef
203.
go back to reference Park SK, Jeong S. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation. Biochem Biophys Res Commun. 2016;470(2):431–8.PubMedCrossRef Park SK, Jeong S. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation. Biochem Biophys Res Commun. 2016;470(2):431–8.PubMedCrossRef
204.
go back to reference Ratnadiwakara M, Archer SK, Dent CI, De Los Mozos IR, Beilharz TH, Knaupp AS, et al. SRSF3 promotes pluripotency through nanog mRNA export and coordination of the pluripotency gene expression program. eLife. 2018;7:e37419.PubMedPubMedCentralCrossRef Ratnadiwakara M, Archer SK, Dent CI, De Los Mozos IR, Beilharz TH, Knaupp AS, et al. SRSF3 promotes pluripotency through nanog mRNA export and coordination of the pluripotency gene expression program. eLife. 2018;7:e37419.PubMedPubMedCentralCrossRef
205.
206.
go back to reference Maciolek NL, McNally MT. Serine/arginine-Rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in rous sarcoma virus. J Virol. 2007;81(20):11208–17.PubMedPubMedCentralCrossRef Maciolek NL, McNally MT. Serine/arginine-Rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in rous sarcoma virus. J Virol. 2007;81(20):11208–17.PubMedPubMedCentralCrossRef
207.
go back to reference Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98(4):262–72.PubMedCrossRef Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98(4):262–72.PubMedCrossRef
208.
go back to reference Schmidt M, Böhm D, von Törne C, Steiner E, Puhl A, Pilch H, et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 2008;68(13):5405–13.PubMedCrossRef Schmidt M, Böhm D, von Törne C, Steiner E, Puhl A, Pilch H, et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 2008;68(13):5405–13.PubMedCrossRef
209.
go back to reference Ke H, Zhao LM, Zhang HL, Feng X, Xu HB, Hao JJ, et al. Loss of TDP43 inhibits progression of triple-negative breast cancer in coordination with SRSF3. Proc Natl Acad Sci U S A. 2018;115(15):E3426–35.PubMedPubMedCentralCrossRef Ke H, Zhao LM, Zhang HL, Feng X, Xu HB, Hao JJ, et al. Loss of TDP43 inhibits progression of triple-negative breast cancer in coordination with SRSF3. Proc Natl Acad Sci U S A. 2018;115(15):E3426–35.PubMedPubMedCentralCrossRef
210.
go back to reference Su YA, Yang J, Tao L, Nguyen H, He P. Undetectable and decreased expression of KIAA1949 (phostensin) encoded on chromosome 6p21.33 in human breast cancers revealed by Transcriptome Analysis. J Cancer. 2010;1:38–50.PubMedPubMedCentralCrossRef Su YA, Yang J, Tao L, Nguyen H, He P. Undetectable and decreased expression of KIAA1949 (phostensin) encoded on chromosome 6p21.33 in human breast cancers revealed by Transcriptome Analysis. J Cancer. 2010;1:38–50.PubMedPubMedCentralCrossRef
211.
go back to reference Kim YJ, Kim BR, Ryu JS, Lee GO, Kim HR, Choi KH, et al. HNRNPA1, a Splicing Regulator, is an effective target protein for cervical Cancer detection comparison with conventional tumor markers. Int J Gynecol Cancer. 2017;27(2):326–31.PubMedCrossRef Kim YJ, Kim BR, Ryu JS, Lee GO, Kim HR, Choi KH, et al. HNRNPA1, a Splicing Regulator, is an effective target protein for cervical Cancer detection comparison with conventional tumor markers. Int J Gynecol Cancer. 2017;27(2):326–31.PubMedCrossRef
212.
go back to reference Torres S, García-Palmero I, Marín-Vicente C, Bartolomé RA, Calviño E, Fernández-Aceñero MJ, et al. Proteomic characterization of transcription and splicing factors Associated with a metastatic phenotype in Colorectal Cancer. J Proteome Res. 2018;17(1):252–64.PubMedCrossRef Torres S, García-Palmero I, Marín-Vicente C, Bartolomé RA, Calviño E, Fernández-Aceñero MJ, et al. Proteomic characterization of transcription and splicing factors Associated with a metastatic phenotype in Colorectal Cancer. J Proteome Res. 2018;17(1):252–64.PubMedCrossRef
213.
go back to reference Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, Komura K, et al. SRSF3, a Splicer of the PKM Gene, regulates cell growth and maintenance of Cancer-Specific Energy metabolism in Colon Cancer cells. Int J Mol Sci. 2018;19(10):3012.PubMedPubMedCentralCrossRef Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, Komura K, et al. SRSF3, a Splicer of the PKM Gene, regulates cell growth and maintenance of Cancer-Specific Energy metabolism in Colon Cancer cells. Int J Mol Sci. 2018;19(10):3012.PubMedPubMedCentralCrossRef
214.
go back to reference Kurokawa K, Akaike Y, Masuda K, Kuwano Y, Nishida K, Yamagishi N, et al. Downregulation of serine/arginine-rich splicing factor 3 induces G1 cell cycle arrest and apoptosis in colon cancer cells. Oncogene. 2014;33(11):1407–17.PubMedCrossRef Kurokawa K, Akaike Y, Masuda K, Kuwano Y, Nishida K, Yamagishi N, et al. Downregulation of serine/arginine-rich splicing factor 3 induces G1 cell cycle arrest and apoptosis in colon cancer cells. Oncogene. 2014;33(11):1407–17.PubMedCrossRef
215.
go back to reference Song X, Wan XC, Huang TZ, Zeng C, Sastry N, Wu BL, et al. SRSF3-Regulated RNA alternative splicing promotes Glioblastoma Tumorigenicity by affecting multiple Cellular processes. Cancer Res. 2019;79(20):5288–301.PubMedPubMedCentralCrossRef Song X, Wan XC, Huang TZ, Zeng C, Sastry N, Wu BL, et al. SRSF3-Regulated RNA alternative splicing promotes Glioblastoma Tumorigenicity by affecting multiple Cellular processes. Cancer Res. 2019;79(20):5288–301.PubMedPubMedCentralCrossRef
216.
go back to reference Xu LF, Shen JX, Jia J, Jia R. Inclusion of hnRNP L alternative exon 7 is Associated with Good Prognosis and inhibited by Oncogene SRSF3 in Head and Neck squamous cell carcinoma. BioMed Res Int. 2019;2019:2019.CrossRef Xu LF, Shen JX, Jia J, Jia R. Inclusion of hnRNP L alternative exon 7 is Associated with Good Prognosis and inhibited by Oncogene SRSF3 in Head and Neck squamous cell carcinoma. BioMed Res Int. 2019;2019:2019.CrossRef
217.
go back to reference Wang HL, Lekbaby B, Fares N, Augustin J, Attout T, Schnuriger A, et al. Alteration of splicing factors’ expression during liver disease progression: impact on hepatocellular carcinoma outcome. Hepatol Int. 2019;13(4):454–67.PubMedCrossRef Wang HL, Lekbaby B, Fares N, Augustin J, Attout T, Schnuriger A, et al. Alteration of splicing factors’ expression during liver disease progression: impact on hepatocellular carcinoma outcome. Hepatol Int. 2019;13(4):454–67.PubMedCrossRef
218.
go back to reference Chen H, Gao F, He M, Ding XF, Wong AM, Sze SC, et al. Long-read RNA sequencing identifies alternative splice variants in Hepatocellular Carcinoma and Tumor-Specific Isoforms. Hepatology. 2019;70(3):1011–25.PubMedCrossRef Chen H, Gao F, He M, Ding XF, Wong AM, Sze SC, et al. Long-read RNA sequencing identifies alternative splice variants in Hepatocellular Carcinoma and Tumor-Specific Isoforms. Hepatology. 2019;70(3):1011–25.PubMedCrossRef
219.
go back to reference Yea S, Narla G, Zhao X, Garg R, Tal-Kremer S, Hod E, et al. Ras promotes growth by alternative splicing-mediated inactivation of the KLF6 tumor suppressor in hepatocellular carcinoma. Gastroenterology. 2008;134(5):1521–31.PubMedCrossRef Yea S, Narla G, Zhao X, Garg R, Tal-Kremer S, Hod E, et al. Ras promotes growth by alternative splicing-mediated inactivation of the KLF6 tumor suppressor in hepatocellular carcinoma. Gastroenterology. 2008;134(5):1521–31.PubMedCrossRef
220.
go back to reference Jia R, Zhang S, Liu MM, Zhang Y, Liu Y, Fan MW, et al. HnRNP L is important for the expression of oncogene SRSF3 and oncogenic potential of oral squamous cell carcinoma cells. Sci Rep. 2016;6:35976.PubMedPubMedCentralCrossRef Jia R, Zhang S, Liu MM, Zhang Y, Liu Y, Fan MW, et al. HnRNP L is important for the expression of oncogene SRSF3 and oncogenic potential of oral squamous cell carcinoma cells. Sci Rep. 2016;6:35976.PubMedPubMedCentralCrossRef
221.
go back to reference Liu PQ, Guo ZZ, Yin YT, Jia J, Guo JH, Jia R. Expression of SRSF3 is correlated with carcinogenesis and progression of oral squamous cell carcinoma. Int J Med Sci. 2016;13(7):533–9.CrossRef Liu PQ, Guo ZZ, Yin YT, Jia J, Guo JH, Jia R. Expression of SRSF3 is correlated with carcinogenesis and progression of oral squamous cell carcinoma. Int J Med Sci. 2016;13(7):533–9.CrossRef
222.
go back to reference He XL, Ee PLR, Coon JS, Beck WT. Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. Clin Cancer Res. 2004;10(14):4652–60.PubMedCrossRef He XL, Ee PLR, Coon JS, Beck WT. Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. Clin Cancer Res. 2004;10(14):4652–60.PubMedCrossRef
223.
go back to reference Iborra S, Hirschfeld M, Jaeger M, zur Hausen A, Braicu I, Sehouli J, et al. Alterations in expression pattern of splicing factors in epithelial ovarian Cancer and its clinical impact. Int J Gynecol Cancer. 2013;23(6):990–6.PubMedCrossRef Iborra S, Hirschfeld M, Jaeger M, zur Hausen A, Braicu I, Sehouli J, et al. Alterations in expression pattern of splicing factors in epithelial ovarian Cancer and its clinical impact. Int J Gynecol Cancer. 2013;23(6):990–6.PubMedCrossRef
224.
go back to reference Villegas VM, Gold AS, Wildner A, Ehlies F, Murray TG. Genomic landscape of retinoblastoma. Clin Exp Ophthalmol. 2014;42(1):2–3.PubMedCrossRef Villegas VM, Gold AS, Wildner A, Ehlies F, Murray TG. Genomic landscape of retinoblastoma. Clin Exp Ophthalmol. 2014;42(1):2–3.PubMedCrossRef
225.
go back to reference Kooi IE, Mol BM, Massink MPG, de Jong MC, de Graaf P, van der Valk P, et al. A Meta-analysis of Retinoblastoma Copy numbers refines the list of possible driver genes involved in Tumor Progression. PLoS ONE. 2016;11(4):e0153323.PubMedPubMedCentralCrossRef Kooi IE, Mol BM, Massink MPG, de Jong MC, de Graaf P, van der Valk P, et al. A Meta-analysis of Retinoblastoma Copy numbers refines the list of possible driver genes involved in Tumor Progression. PLoS ONE. 2016;11(4):e0153323.PubMedPubMedCentralCrossRef
226.
go back to reference Lankat-Buttgereit B, Göke R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell. 2009;101(6):309–17.PubMedCrossRef Lankat-Buttgereit B, Göke R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell. 2009;101(6):309–17.PubMedCrossRef
227.
go back to reference Kim J, Park RY, Chen JK, Kim J, Jeong S, Ohn T. Splicing factor SRSF3 represses the translation of programmed cell death 4 mRNA by associating with the 5’-UTR region. Cell Death Differ. 2014;21(3):481–90.PubMedCrossRef Kim J, Park RY, Chen JK, Kim J, Jeong S, Ohn T. Splicing factor SRSF3 represses the translation of programmed cell death 4 mRNA by associating with the 5’-UTR region. Cell Death Differ. 2014;21(3):481–90.PubMedCrossRef
228.
go back to reference Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol. 2004;24(13):5835–43.PubMedPubMedCentralCrossRef Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol. 2004;24(13):5835–43.PubMedPubMedCentralCrossRef
230.
go back to reference Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest. 2016;126(1):68–84.PubMedCrossRef Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest. 2016;126(1):68–84.PubMedCrossRef
231.
go back to reference Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, Mcguire WL. Human-breast Cancer - correlation of Relapse and Survival with amplification of the Her-2 Neu Oncogene. Science. 1987;235(4785):177–82.PubMedCrossRef Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, Mcguire WL. Human-breast Cancer - correlation of Relapse and Survival with amplification of the Her-2 Neu Oncogene. Science. 1987;235(4785):177–82.PubMedCrossRef
232.
go back to reference Gautrey H, Jackson C, Dittrich AL, Browell D, Lennard T, Tyson-Capper A. SRSF3 and hnRNP H1 regulate a splicing hotspot of HER2 in breast cancer cells. RNA Biol. 2015;12(10):1139–51.PubMedPubMedCentralCrossRef Gautrey H, Jackson C, Dittrich AL, Browell D, Lennard T, Tyson-Capper A. SRSF3 and hnRNP H1 regulate a splicing hotspot of HER2 in breast cancer cells. RNA Biol. 2015;12(10):1139–51.PubMedPubMedCentralCrossRef
233.
go back to reference Aigner A, Juhl H, Malerczyk C, Tkybusch A, Benz CC, Czubayko F. Expression of a truncated 100 kDa HER2 splice variant acts as an endogenous inhibitor of tumour cell proliferation. Oncogene. 2001;20(17):2101–11.PubMedCrossRef Aigner A, Juhl H, Malerczyk C, Tkybusch A, Benz CC, Czubayko F. Expression of a truncated 100 kDa HER2 splice variant acts as an endogenous inhibitor of tumour cell proliferation. Oncogene. 2001;20(17):2101–11.PubMedCrossRef
234.
go back to reference Romanelli MG, Diani E, Lievens PMJ. New Insights into functional roles of the polypyrimidine tract-binding protein. Int J Mol Sci. 2013;14(11):22906–32.PubMedPubMedCentralCrossRef Romanelli MG, Diani E, Lievens PMJ. New Insights into functional roles of the polypyrimidine tract-binding protein. Int J Mol Sci. 2013;14(11):22906–32.PubMedPubMedCentralCrossRef
235.
go back to reference Sawicka K, Bushell M, Spriggs KA, Willis AE. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans. 2008;36:641–7.PubMedCrossRef Sawicka K, Bushell M, Spriggs KA, Willis AE. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans. 2008;36:641–7.PubMedCrossRef
236.
go back to reference Ray D, Kazan H, Chan ET, Castillo LP, Chaudhry S, Talukder S, et al. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol. 2009;27(7):667–70.PubMedCrossRef Ray D, Kazan H, Chan ET, Castillo LP, Chaudhry S, Talukder S, et al. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol. 2009;27(7):667–70.PubMedCrossRef
237.
go back to reference Reid DC, Chang BL, Gunderson SI, Alpert L, Thompson WA, Fairbrother WG. Next-generation SELEX identifies sequence and structural determinants of splicing factor binding in human pre-mRNA sequence. RNA. 2009;15(12):2385–97.PubMedPubMedCentralCrossRef Reid DC, Chang BL, Gunderson SI, Alpert L, Thompson WA, Fairbrother WG. Next-generation SELEX identifies sequence and structural determinants of splicing factor binding in human pre-mRNA sequence. RNA. 2009;15(12):2385–97.PubMedPubMedCentralCrossRef
238.
go back to reference He X, Arslan AD, Pool MD, Ho TT, Darcy KM, Coon JS, et al. Knockdown of splicing factor SRp20 causes apoptosis in ovarian cancer cells and its expression is associated with malignancy of epithelial ovarian cancer. Oncogene. 2011;30(3):356–65.PubMedCrossRef He X, Arslan AD, Pool MD, Ho TT, Darcy KM, Coon JS, et al. Knockdown of splicing factor SRp20 causes apoptosis in ovarian cancer cells and its expression is associated with malignancy of epithelial ovarian cancer. Oncogene. 2011;30(3):356–65.PubMedCrossRef
239.
go back to reference Wang C, Norton JT, Ghosh S, Kim J, Fushimi K, Wu JY, et al. Polypyrimidine tract-binding protein (PTB) differentially affects malignancy in a cell line-dependent manner. J Biol Chem. 2008;283(29):20277–87.PubMedPubMedCentralCrossRef Wang C, Norton JT, Ghosh S, Kim J, Fushimi K, Wu JY, et al. Polypyrimidine tract-binding protein (PTB) differentially affects malignancy in a cell line-dependent manner. J Biol Chem. 2008;283(29):20277–87.PubMedPubMedCentralCrossRef
240.
go back to reference He X, Pool M, Darcy KM, Lim SB, Auersperg N, Coon JS, et al. Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene. 2007;26(34):4961–8.PubMedPubMedCentralCrossRef He X, Pool M, Darcy KM, Lim SB, Auersperg N, Coon JS, et al. Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene. 2007;26(34):4961–8.PubMedPubMedCentralCrossRef
241.
go back to reference Cheung HC, Hai T, Zhu W, Baggerly KA, Tsavachidis S, Krahe R, et al. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. Brain. 2009;132:2277–88.PubMedPubMedCentralCrossRef Cheung HC, Hai T, Zhu W, Baggerly KA, Tsavachidis S, Krahe R, et al. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. Brain. 2009;132:2277–88.PubMedPubMedCentralCrossRef
242.
go back to reference Izaguirre DI, Zhu W, Hai T, Cheung HC, Krahe R, Cote GJ. PTBP1-Dependent regulation of USP5 Alternative RNA splicing plays a role in Glioblastoma Tumorigenesis. Mol Carcinog. 2012;51(11):895–906.PubMedCrossRef Izaguirre DI, Zhu W, Hai T, Cheung HC, Krahe R, Cote GJ. PTBP1-Dependent regulation of USP5 Alternative RNA splicing plays a role in Glioblastoma Tumorigenesis. Mol Carcinog. 2012;51(11):895–906.PubMedCrossRef
243.
go back to reference Qu M, Song N, Chai G, Wu XL, Liu W. Pathological niche environment transforms dermal stem cells to keloid stem cells: a hypothesis of keloid formation and development. Med Hypotheses. 2013;81(5):807–12.PubMedCrossRef Qu M, Song N, Chai G, Wu XL, Liu W. Pathological niche environment transforms dermal stem cells to keloid stem cells: a hypothesis of keloid formation and development. Med Hypotheses. 2013;81(5):807–12.PubMedCrossRef
244.
go back to reference Appleton I, Brown NJ, Willoughby DA. Apoptosis, necrosis, and proliferation - possible implications in etiology of keloids. Am J Pathol. 1996;149(5):1441–7.PubMedPubMedCentral Appleton I, Brown NJ, Willoughby DA. Apoptosis, necrosis, and proliferation - possible implications in etiology of keloids. Am J Pathol. 1996;149(5):1441–7.PubMedPubMedCentral
245.
go back to reference Jiao H, Dong P, Yan L, Yang ZG, Lv XY, Li QC, et al. TGF-β1 induces polypyrimidine tract-binding protein to alter fibroblasts proliferation and fibronectin deposition in Keloid. Sci Rep. 2016;6:38033.PubMedPubMedCentralCrossRef Jiao H, Dong P, Yan L, Yang ZG, Lv XY, Li QC, et al. TGF-β1 induces polypyrimidine tract-binding protein to alter fibroblasts proliferation and fibronectin deposition in Keloid. Sci Rep. 2016;6:38033.PubMedPubMedCentralCrossRef
246.
go back to reference Jin W, Bruno IG, Xie TX, Sanger LJ, Cote GJ. Polypyrimidine tract-binding protein down-regulates fibroblast growth factor receptor 1 alpha-exon inclusion. Cancer Res. 2003;63(19):6154–7.PubMed Jin W, Bruno IG, Xie TX, Sanger LJ, Cote GJ. Polypyrimidine tract-binding protein down-regulates fibroblast growth factor receptor 1 alpha-exon inclusion. Cancer Res. 2003;63(19):6154–7.PubMed
247.
go back to reference Carstens RP, Wagner EJ, Garcia-Blanco MA. An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol Cell Biol. 2000;20(19):7388–400.PubMedPubMedCentralCrossRef Carstens RP, Wagner EJ, Garcia-Blanco MA. An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol Cell Biol. 2000;20(19):7388–400.PubMedPubMedCentralCrossRef
248.
go back to reference Côté J, Dupuis S, Wu JY. Polypyrimidine track-binding protein binding downstream of caspase-2 alternative exon 9 represses its inclusion. J Biol Chem. 2001;276(11):8535–43.PubMedCrossRef Côté J, Dupuis S, Wu JY. Polypyrimidine track-binding protein binding downstream of caspase-2 alternative exon 9 represses its inclusion. J Biol Chem. 2001;276(11):8535–43.PubMedCrossRef
249.
go back to reference Izquierdo JM. Hu antigen R (HuR) functions as an alternative pre-mRNA splicing regulator of Fas apoptosis-promoting receptor on exon definition. J Biol Chem. 2008;283(27):19077–84.PubMedCrossRef Izquierdo JM. Hu antigen R (HuR) functions as an alternative pre-mRNA splicing regulator of Fas apoptosis-promoting receptor on exon definition. J Biol Chem. 2008;283(27):19077–84.PubMedCrossRef
250.
go back to reference Izquierdo JM, Majós N, Bonnal S, Martínez C, Castelo R, Guigó R, et al. Regulation of fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell. 2005;19(4):475–84.PubMedCrossRef Izquierdo JM, Majós N, Bonnal S, Martínez C, Castelo R, Guigó R, et al. Regulation of fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell. 2005;19(4):475–84.PubMedCrossRef
251.
go back to reference Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230–43.PubMedCrossRef Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230–43.PubMedCrossRef
252.
go back to reference David CJ, Chen M, Assanah M, Canoll P, Manley JL. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 2010;463(7279):364–8.PubMedCrossRef David CJ, Chen M, Assanah M, Canoll P, Manley JL. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 2010;463(7279):364–8.PubMedCrossRef
253.
go back to reference Calabretta S, Bielli P, Passacantilli I, Pilozzi E, Fendrich V, Capurso G, et al. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene. 2016;35(16):2031–9.PubMedCrossRef Calabretta S, Bielli P, Passacantilli I, Pilozzi E, Fendrich V, Capurso G, et al. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene. 2016;35(16):2031–9.PubMedCrossRef
254.
go back to reference Glinos DA, Garborcauskas G, Hoffman P, Ehsan N, Jiang LH, Gokden A, et al. Transcriptome variation in human tissues revealed by long-read sequencing. Nature. 2022;608(7922):353–9.PubMedPubMedCentralCrossRef Glinos DA, Garborcauskas G, Hoffman P, Ehsan N, Jiang LH, Gokden A, et al. Transcriptome variation in human tissues revealed by long-read sequencing. Nature. 2022;608(7922):353–9.PubMedPubMedCentralCrossRef
255.
go back to reference Gao DD, Morini E, Salani M, Krauson AJ, Chekuri A, Sharma N, et al. A deep learning approach to identify gene targets of a therapeutic for human splicing disorders. Nat Commun. 2021;12(1):3332.PubMedPubMedCentralCrossRef Gao DD, Morini E, Salani M, Krauson AJ, Chekuri A, Sharma N, et al. A deep learning approach to identify gene targets of a therapeutic for human splicing disorders. Nat Commun. 2021;12(1):3332.PubMedPubMedCentralCrossRef
Metadata
Title
The role of alternative pre-mRNA splicing in cancer progression
Authors
Sunkyung Choi
Namjoon Cho
Eun-Mi Kim
Kee K. Kim
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2023
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-023-03094-3

Other articles of this Issue 1/2023

Cancer Cell International 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine