Skip to main content
Top
Published in: Cancer Cell International 1/2023

Open Access 01-12-2023 | Gastric Cancer | Research

FOXA1/MND1/TKT axis regulates gastric cancer progression and oxaliplatin sensitivity via PI3K/AKT signaling pathway

Authors: Xiaosi Hu, Shuai Zhou, Haohao Li, Zehui Wu, Ye Wang, Lei Meng, Zhangming Chen, Zhijian Wei, Qing Pang, Aman Xu

Published in: Cancer Cell International | Issue 1/2023

Login to get access

Abstract

Background

Drug resistance is a main factor affecting the chemotherapy efficacy of gastric cancer (GC), in which meiosis plays an important role. Therefore, it is urgent to explore the effect of meiosis related genes on chemotherapy resistance.

Methods

The expression of meiotic nuclear divisions 1 (MND1) in GC was detected by using TCGA and clinical specimens. In vitro and in vivo assays were used to investigate the effects of MND1. The molecular mechanism was determined using luciferase reporter assay, CO-IP and mass spectrometry (MS).

Results

Through bioinformatics, we found that MND1 was highly expressed in platinum-resistant samples. In vitro experiments showed that interference of MND1 significantly inhibited the progression of GC and increased the sensitivity to oxaliplatin. MND1 was significantly higher in 159 GC tissues in comparison with the matched adjacent normal tissues. In addition, overexpression of MND1 was associated with worse survival, advanced TNM stage, and lower pathological grade in patients with GC. Further investigation revealed that forkhead box protein A1 (FOXA1) directly binds to the promoter of MND1 to inhibit its transcription. CO-IP and MS assays showed that MND1 was coexpressed with transketolase (TKT). In addition,TKT activated the PI3K/AKT signaling axis and enhanced the glucose uptake and lactate production in GC cells.

Conclusions

Our results confirm that FOXA1 inhibits the expression of MND1, which can directly bind to TKT to promote GC progression and reduce oxaliplatin sensitivity through the PI3K/AKT signaling pathway.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Bae JS, Chang W, Kim SH, et al. Development of a predictive model for extragastric recurrence after curative resection for early gastric cancer. Gastric Cancer. 2022;25(1):255–64.CrossRefPubMed Bae JS, Chang W, Kim SH, et al. Development of a predictive model for extragastric recurrence after curative resection for early gastric cancer. Gastric Cancer. 2022;25(1):255–64.CrossRefPubMed
3.
go back to reference Hosoda K, Katada C, Ishido K, et al. Neoadjuvant chemotherapy plus surgery for high-risk advanced gastric cancer: long-term results of KDOG1001 trial. Langenbecks Arch Surg. 2020;405(6):777–85.CrossRefPubMed Hosoda K, Katada C, Ishido K, et al. Neoadjuvant chemotherapy plus surgery for high-risk advanced gastric cancer: long-term results of KDOG1001 trial. Langenbecks Arch Surg. 2020;405(6):777–85.CrossRefPubMed
4.
go back to reference Tang Z, Wang Y, Yu Y, et al. Neoadjuvant apatinib combined with oxaliplatin and capecitabine in patients with locally advanced adenocarcinoma of stomach or gastroesophageal junction: a single-arm, open-label, phase 2 trial. BMC Med. 2022;20(1):107.CrossRefPubMedPubMedCentral Tang Z, Wang Y, Yu Y, et al. Neoadjuvant apatinib combined with oxaliplatin and capecitabine in patients with locally advanced adenocarcinoma of stomach or gastroesophageal junction: a single-arm, open-label, phase 2 trial. BMC Med. 2022;20(1):107.CrossRefPubMedPubMedCentral
5.
go back to reference Li H, Wang C, Lan L, et al. METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cell Mol Life Sci. 2022;79(3):135.CrossRefPubMed Li H, Wang C, Lan L, et al. METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cell Mol Life Sci. 2022;79(3):135.CrossRefPubMed
6.
go back to reference Whitehurst AW. Cause and consequence of cancer/testis antigen activation in cancer. Annu Rev Pharmacol Toxicol. 2014;54:251–72.CrossRefPubMed Whitehurst AW. Cause and consequence of cancer/testis antigen activation in cancer. Annu Rev Pharmacol Toxicol. 2014;54:251–72.CrossRefPubMed
7.
go back to reference McFarlane RJ, Wakeman JA. Meiosis-like functions in oncogenesis: a new view of cancer. Cancer Res. 2017;77(21):5712–6.CrossRefPubMed McFarlane RJ, Wakeman JA. Meiosis-like functions in oncogenesis: a new view of cancer. Cancer Res. 2017;77(21):5712–6.CrossRefPubMed
8.
go back to reference Tsubouchi H, Roeder GS. The Mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol Cell Biol. 2002;22(9):3078–88.CrossRefPubMedPubMedCentral Tsubouchi H, Roeder GS. The Mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol Cell Biol. 2002;22(9):3078–88.CrossRefPubMedPubMedCentral
9.
go back to reference Dilley RL, Verma P, Cho NW, Winters HD, Wondisford AR, Greenberg RA. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature. 2016;539(7627):54–8.CrossRefPubMedPubMedCentral Dilley RL, Verma P, Cho NW, Winters HD, Wondisford AR, Greenberg RA. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature. 2016;539(7627):54–8.CrossRefPubMedPubMedCentral
10.
go back to reference Zhang Q, Shi R, Bai Y, et al. Meiotic nuclear divisions 1 (MND1) fuels cell cycle progression by activating a KLF6/E2F1 positive feedback loop in lung adenocarcinoma. Cancer Commun. 2021;41(6):492–510.CrossRef Zhang Q, Shi R, Bai Y, et al. Meiotic nuclear divisions 1 (MND1) fuels cell cycle progression by activating a KLF6/E2F1 positive feedback loop in lung adenocarcinoma. Cancer Commun. 2021;41(6):492–510.CrossRef
11.
go back to reference Lin J, Xia L, Oyang L, et al. The POU2F1-ALDOA axis promotes the proliferation and chemoresistance of colon cancer cells by enhancing glycolysis and the pentose phosphate pathway activity. Oncogene. 2022;41(7):1024–39.CrossRefPubMedPubMedCentral Lin J, Xia L, Oyang L, et al. The POU2F1-ALDOA axis promotes the proliferation and chemoresistance of colon cancer cells by enhancing glycolysis and the pentose phosphate pathway activity. Oncogene. 2022;41(7):1024–39.CrossRefPubMedPubMedCentral
12.
go back to reference Bin YL, Hu HS, Tian F, et al. Metabolic reprogramming in gastric cancer: trojan horse effect. Front Oncol. 2021;11:745209.CrossRefPubMed Bin YL, Hu HS, Tian F, et al. Metabolic reprogramming in gastric cancer: trojan horse effect. Front Oncol. 2021;11:745209.CrossRefPubMed
13.
go back to reference Gu N, Dai W, Liu H, et al. Genetic variants in TKT and DERA in the nicotinamide adenine dinucleotide phosphate pathway predict melanoma survival. Eur J Cancer. 2020;136:84–94.CrossRefPubMedPubMedCentral Gu N, Dai W, Liu H, et al. Genetic variants in TKT and DERA in the nicotinamide adenine dinucleotide phosphate pathway predict melanoma survival. Eur J Cancer. 2020;136:84–94.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Croner RS, Sevim M, Metodiev MV, et al. Identification of predictive markers for response to neoadjuvant chemoradiation in rectal carcinomas by proteomic isotope coded protein label (ICPL) analysis. Int J Mol Sci. 2016;17(2):209.CrossRefPubMedPubMedCentral Croner RS, Sevim M, Metodiev MV, et al. Identification of predictive markers for response to neoadjuvant chemoradiation in rectal carcinomas by proteomic isotope coded protein label (ICPL) analysis. Int J Mol Sci. 2016;17(2):209.CrossRefPubMedPubMedCentral
16.
go back to reference Zhou S, Qu KL, Li JA, et al. YY1 activates EMI2 and promotes the progression of cholangiocarcinoma through the PI3K/Akt signaling axis. Cancer Cell Int. 2021;21(1):699.CrossRefPubMedPubMedCentral Zhou S, Qu KL, Li JA, et al. YY1 activates EMI2 and promotes the progression of cholangiocarcinoma through the PI3K/Akt signaling axis. Cancer Cell Int. 2021;21(1):699.CrossRefPubMedPubMedCentral
17.
go back to reference Ma Z, Li Z, Wang S, et al. ZMAT1 acts as a tumor suppressor in pancreatic ductal adenocarcinoma by inducing SIRT3/p53 signaling pathway. J Exp Clin Cancer Res. 2022;41(1):130.CrossRefPubMedPubMedCentral Ma Z, Li Z, Wang S, et al. ZMAT1 acts as a tumor suppressor in pancreatic ductal adenocarcinoma by inducing SIRT3/p53 signaling pathway. J Exp Clin Cancer Res. 2022;41(1):130.CrossRefPubMedPubMedCentral
18.
go back to reference Bao Z, Cheng J, Zhu J, et al. Using weighted gene co-expression network analysis to identify increased MND1 expression as a predictor of poor breast cancer survival. Int J Gen Med. 2022;15:4959–74.CrossRefPubMedPubMedCentral Bao Z, Cheng J, Zhu J, et al. Using weighted gene co-expression network analysis to identify increased MND1 expression as a predictor of poor breast cancer survival. Int J Gen Med. 2022;15:4959–74.CrossRefPubMedPubMedCentral
19.
go back to reference Qiu L, Ma Y, Chen X, et al. Heparin-binding growth factor (HDGF) drives radioresistance in breast cancer by activating the STAT3 signaling pathway. J Transl Med. 2021;19(1):344.CrossRefPubMedPubMedCentral Qiu L, Ma Y, Chen X, et al. Heparin-binding growth factor (HDGF) drives radioresistance in breast cancer by activating the STAT3 signaling pathway. J Transl Med. 2021;19(1):344.CrossRefPubMedPubMedCentral
20.
go back to reference Shah MA, Schwartz GK. Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res. 2001;7(8):2168–81.PubMed Shah MA, Schwartz GK. Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res. 2001;7(8):2168–81.PubMed
21.
go back to reference Suppramote O, Prasopporn S, Aroonpruksakul S, et al. The acquired vulnerability caused by cdk4/6 inhibition promotes drug synergism between oxaliplatin and palbociclib in cholangiocarcinoma. Front Oncol. 2022;12:877194.CrossRefPubMedPubMedCentral Suppramote O, Prasopporn S, Aroonpruksakul S, et al. The acquired vulnerability caused by cdk4/6 inhibition promotes drug synergism between oxaliplatin and palbociclib in cholangiocarcinoma. Front Oncol. 2022;12:877194.CrossRefPubMedPubMedCentral
23.
go back to reference Tang DE, Dai Y, Xu Y, et al. The ubiquitinase ZFP91 promotes tumor cell survival and confers chemoresistance through FOXA1 destabilization. Carcinogenesis. 2020;41(1):56–66.PubMed Tang DE, Dai Y, Xu Y, et al. The ubiquitinase ZFP91 promotes tumor cell survival and confers chemoresistance through FOXA1 destabilization. Carcinogenesis. 2020;41(1):56–66.PubMed
24.
go back to reference Lin M, Pan J, Chen Q, Xu Z, Lin X, Shi C. Overexpression of FOXA1 inhibits cell proliferation and EMT of human gastric cancer AGS cells. Gene. 2018;642:145–51.CrossRefPubMed Lin M, Pan J, Chen Q, Xu Z, Lin X, Shi C. Overexpression of FOXA1 inhibits cell proliferation and EMT of human gastric cancer AGS cells. Gene. 2018;642:145–51.CrossRefPubMed
25.
go back to reference Sekiya T, Muthurajan UM, Luger K, Tulin AV, Zaret KS. Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev. 2009;23(7):804–9.CrossRefPubMedPubMedCentral Sekiya T, Muthurajan UM, Luger K, Tulin AV, Zaret KS. Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev. 2009;23(7):804–9.CrossRefPubMedPubMedCentral
26.
go back to reference Li X, Zhang Z, Zhang Y, Cao Y, Wei H, Wu Z. Upregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16(INK4a) inactivation. J Exp Clin Cancer Res. 2018;37(1):39.CrossRefPubMedPubMedCentral Li X, Zhang Z, Zhang Y, Cao Y, Wei H, Wu Z. Upregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16(INK4a) inactivation. J Exp Clin Cancer Res. 2018;37(1):39.CrossRefPubMedPubMedCentral
27.
go back to reference Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between metabolism and cancer biology. Cell. 2017;168(4):657–69.CrossRefPubMed Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between metabolism and cancer biology. Cell. 2017;168(4):657–69.CrossRefPubMed
28.
go back to reference Ricciardelli C, Lokman NA, Cheruvu S, et al. Transketolase is upregulated in metastatic peritoneal implants and promotes ovarian cancer cell proliferation. Clin Exp Metastasis. 2015;32(5):441–55.CrossRefPubMed Ricciardelli C, Lokman NA, Cheruvu S, et al. Transketolase is upregulated in metastatic peritoneal implants and promotes ovarian cancer cell proliferation. Clin Exp Metastasis. 2015;32(5):441–55.CrossRefPubMed
29.
go back to reference Li M, Lu Y, Li Y, et al. Transketolase deficiency protects the liver from DNA damage by increasing levels of ribose 5-phosphate and nucleotides. Cancer Res. 2019;79(14):3689–701.CrossRefPubMed Li M, Lu Y, Li Y, et al. Transketolase deficiency protects the liver from DNA damage by increasing levels of ribose 5-phosphate and nucleotides. Cancer Res. 2019;79(14):3689–701.CrossRefPubMed
30.
go back to reference Li M, Zhao X, Yong H, et al. Transketolase promotes colorectal cancer metastasis through regulating AKT phosphorylation. Cell Death Dis. 2022;13(2):99.CrossRefPubMedPubMedCentral Li M, Zhao X, Yong H, et al. Transketolase promotes colorectal cancer metastasis through regulating AKT phosphorylation. Cell Death Dis. 2022;13(2):99.CrossRefPubMedPubMedCentral
31.
go back to reference Yuan W, Wu S, Guo J, et al. Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo. Cancer Biol Ther. 2010;9(9):710–6.CrossRefPubMed Yuan W, Wu S, Guo J, et al. Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo. Cancer Biol Ther. 2010;9(9):710–6.CrossRefPubMed
32.
go back to reference Saha A, Connelly S, Jiang J, et al. Akt phosphorylation and regulation of transketolase is a nodal point for amino acid control of purine synthesis. Mol Cell. 2014;55(2):264–76.CrossRefPubMedPubMedCentral Saha A, Connelly S, Jiang J, et al. Akt phosphorylation and regulation of transketolase is a nodal point for amino acid control of purine synthesis. Mol Cell. 2014;55(2):264–76.CrossRefPubMedPubMedCentral
33.
34.
go back to reference Wang Y, Zhang D, Li Y, Fang F. MiR-138 suppresses the PDK1 expression to decrease the oxaliplatin resistance of colorectal cancer. Onco Targets Ther. 2020;13:3607–18.CrossRefPubMedPubMedCentral Wang Y, Zhang D, Li Y, Fang F. MiR-138 suppresses the PDK1 expression to decrease the oxaliplatin resistance of colorectal cancer. Onco Targets Ther. 2020;13:3607–18.CrossRefPubMedPubMedCentral
35.
go back to reference Cheng C, Xie Z, Li Y, Wang J, Qin C, Zhang Y. PTBP1 knockdown overcomes the resistance to vincristine and oxaliplatin in drug-resistant colon cancer cells through regulation of glycolysis. Biomed Pharmacother. 2018;108:194–200.CrossRefPubMed Cheng C, Xie Z, Li Y, Wang J, Qin C, Zhang Y. PTBP1 knockdown overcomes the resistance to vincristine and oxaliplatin in drug-resistant colon cancer cells through regulation of glycolysis. Biomed Pharmacother. 2018;108:194–200.CrossRefPubMed
36.
go back to reference Fang Z, Gong C, Ye Z, et al. TOPBP1 regulates resistance of gastric cancer to oxaliplatin by promoting transcription of PARP1. DNA Repair (Amst). 2022;111:103278.CrossRefPubMed Fang Z, Gong C, Ye Z, et al. TOPBP1 regulates resistance of gastric cancer to oxaliplatin by promoting transcription of PARP1. DNA Repair (Amst). 2022;111:103278.CrossRefPubMed
37.
go back to reference Yu M, Xu C, Zhang H, et al. The tyrosine phosphatase SHP2 promotes proliferation and oxaliplatin resistance of colon cancer cells through AKT and ERK. Biochem Biophys Res Commun. 2021;563:1–7.CrossRefPubMed Yu M, Xu C, Zhang H, et al. The tyrosine phosphatase SHP2 promotes proliferation and oxaliplatin resistance of colon cancer cells through AKT and ERK. Biochem Biophys Res Commun. 2021;563:1–7.CrossRefPubMed
38.
go back to reference Wang Y, Wu S, Huang C, Li Y, Zhao H, Kasim V. Yin Yang 1 promotes the Warburg effect and tumorigenesis via glucose transporter GLUT3. Cancer Sci. 2018;109(8):2423–34.CrossRefPubMedPubMedCentral Wang Y, Wu S, Huang C, Li Y, Zhao H, Kasim V. Yin Yang 1 promotes the Warburg effect and tumorigenesis via glucose transporter GLUT3. Cancer Sci. 2018;109(8):2423–34.CrossRefPubMedPubMedCentral
39.
go back to reference Kawatani M, Aono H, Hiranuma S, et al. Identification of a small-molecule glucose transporter inhibitor, glutipyran, that inhibits cancer cell growth. ACS Chem Biol. 2021;16(8):1576–86.CrossRefPubMed Kawatani M, Aono H, Hiranuma S, et al. Identification of a small-molecule glucose transporter inhibitor, glutipyran, that inhibits cancer cell growth. ACS Chem Biol. 2021;16(8):1576–86.CrossRefPubMed
Metadata
Title
FOXA1/MND1/TKT axis regulates gastric cancer progression and oxaliplatin sensitivity via PI3K/AKT signaling pathway
Authors
Xiaosi Hu
Shuai Zhou
Haohao Li
Zehui Wu
Ye Wang
Lei Meng
Zhangming Chen
Zhijian Wei
Qing Pang
Aman Xu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2023
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-023-03077-4

Other articles of this Issue 1/2023

Cancer Cell International 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine