Skip to main content
Top
Published in: Cancer Cell International 1/2023

Open Access 01-12-2023 | Gastric Cancer | Research

SALL4 promotes angiogenesis in gastric cancer by regulating VEGF expression and targeting SALL4/VEGF pathway inhibits cancer progression

Authors: Fatma A. Abouelnazar, Xiaoxin Zhang, Jiahui Zhang, Maoye Wang, Dan Yu, Xueyan Zang, Jiayin Zhang, Yixin Li, Jing Xu, Qiurong Yang, Yue Zhou, Haozhou Tang, Yanzheng Wang, Jianmei Gu, Xu Zhang

Published in: Cancer Cell International | Issue 1/2023

Login to get access

Abstract

Background

Spalt-like protein 4 (SALL4) is a stemness-related transcription factor whose abnormal re-expression contributes to cancer initiation and progression. However, the role of SALL4 in cancer angiogenesis remains unknown.

Methods

Analyses of clinical specimens via TCGA datasets were performed to determine the expression level and clinical significance of SALL4 in STAD (Stomach Adenocarcinoma). SALL4 knockdown, knockout, and overexpression were achieved by siRNA, CRISPR/Cas9, and plasmid transfection. The effects of conditioned medium (CM) from SALL4 knockdown or overexpression of gastric cancer cells on endothelial cell proliferation, migration, and tube formation were investigated by CCK-8 assay, transwell migration assay, and tube formation assay. The regulation of VEGF gene expression by SALL4 was studied by qRT-PCR, western blot, chromatin immunoprecipitation (ChIP) assay, and electrophoretic mobility shift assay (EMSA). Engineered exosomes from 293T cells loaded with si-SALL4-B and thalidomide were produced to test their therapeutic effect on gastric cancer progression.

Results

SALL4 expression was increased in STAD and positively correlated with tumor progression and poor prognosis. SALL4-B knockdown or knockout decreased while over-expression increased the promotion of human umbilical vein endothelial cells (HUVEC) cell proliferation, migration, and tube formation by gastric cancer cell-derived CM. Further investigation revealed a widespread association of SALL4 with angiogenic gene transcription through the TCGA datasets. Additionally, SALL4-B knockdown reduced, while over-expression enhanced the expression levels of VEGF-A, B, and C genes. The results of ChIP and EMSA assays indicated that SALL4 could directly bind to the promoters of VEGF-A, B, and C genes and activate their transcription, which may be associated with increased histone H3-K79 and H3-K4 modifications in their promoter regions. Furthermore, si-SALL4-B and thalidomide-loaded exosomes could be efficiently uptaken by gastric cancer cells and significantly reduced SALL4-B and Vascular Endothelial Growth Factor (VEGF) expression levels in gastric cancer cells, thus inhibiting the pro-angiogenic role of their derived CM.

Conclusion

These findings suggest that SALL4 plays an important role in angiogenesis by transcriptionally regulating VEGF expression. Co-delivery of the functional siRNA and anticancer drug via exosomes represents a useful approach to inhibiting cancer angiogenesis by targeting SALL4/VEGF pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel L, Torre A, Ahmedin D. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Global cancer statistics 2018 2018. Bray F, Ferlay J, Soerjomataram I, Siegel L, Torre A, Ahmedin D. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Global cancer statistics 2018 2018.
2.
go back to reference Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors, and prevention. Gastroenterol Review/PrzeglÄ d Gastroenterologiczny. 2019;14(1):26–38. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors, and prevention. Gastroenterol Review/PrzeglÄ d Gastroenterologiczny. 2019;14(1):26–38.
3.
go back to reference Sitarz R, Skierucha M, Mielko J, Offerhaus G, Maciejewski R, Polkowski W. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018; 10: 239–48. In. Cancer Manag Res; 2018. Sitarz R, Skierucha M, Mielko J, Offerhaus G, Maciejewski R, Polkowski W. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018; 10: 239–48. In. Cancer Manag Res; 2018.
5.
go back to reference Cats A, Jansen EP, van Grieken NC, Sikorska K, Lind P, Nordsmark M, Kranenbarg EM-K, Boot H, Trip AK, Swellengrebel HM. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomized phase 3 trial. Lancet Oncol. 2018;19(5):616–28.PubMedCrossRef Cats A, Jansen EP, van Grieken NC, Sikorska K, Lind P, Nordsmark M, Kranenbarg EM-K, Boot H, Trip AK, Swellengrebel HM. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomized phase 3 trial. Lancet Oncol. 2018;19(5):616–28.PubMedCrossRef
6.
go back to reference Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. nature 2000, 407(6801):249–257. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. nature 2000, 407(6801):249–257.
7.
go back to reference Burstein HJ, Schwartz RS. Molecular origins of cancer. In., vol. 358: Mass Medical Soc; 2008: 527–527. Burstein HJ, Schwartz RS. Molecular origins of cancer. In., vol. 358: Mass Medical Soc; 2008: 527–527.
8.
go back to reference Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.PubMedCrossRef Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.PubMedCrossRef
9.
go back to reference Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev. 2002;82(3):673–700.PubMedCrossRef Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev. 2002;82(3):673–700.PubMedCrossRef
10.
go back to reference Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci. 2005;109(3):227–41.CrossRef Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci. 2005;109(3):227–41.CrossRef
11.
go back to reference Zhang L, Xu Z, Xu X, Zhang B, Wu H, Wang M, Zhang X, Yang T, Cai J, Yan Y, et al. SALL4, a novel marker for human gastric carcinogenesis and metastasis. Oncogene. 2014;33(48):5491–500.PubMedCrossRef Zhang L, Xu Z, Xu X, Zhang B, Wu H, Wang M, Zhang X, Yang T, Cai J, Yan Y, et al. SALL4, a novel marker for human gastric carcinogenesis and metastasis. Oncogene. 2014;33(48):5491–500.PubMedCrossRef
12.
go back to reference Gonzalez-Roibon N, Katz B, Chaux A, Sharma R, Munari E, Faraj SF, Illei PB, Torbenson M, Netto GJ. Immunohistochemical expression of SALL4 in hepatocellular carcinoma, a potential pitfall in the differential diagnosis of yolk sac tumors. Hum Pathol. 2013;44(7):1293–9.PubMedCrossRef Gonzalez-Roibon N, Katz B, Chaux A, Sharma R, Munari E, Faraj SF, Illei PB, Torbenson M, Netto GJ. Immunohistochemical expression of SALL4 in hepatocellular carcinoma, a potential pitfall in the differential diagnosis of yolk sac tumors. Hum Pathol. 2013;44(7):1293–9.PubMedCrossRef
13.
go back to reference Li A, Jiao Y, Yong KJ, Wang F, Gao C, Yan B, Srivastava S, Lim GSD, Tang P, Yang H, et al. SALL4 is a new target in endometrial cancer. Oncogene. 2015;34(1):63–72.PubMedCrossRef Li A, Jiao Y, Yong KJ, Wang F, Gao C, Yan B, Srivastava S, Lim GSD, Tang P, Yang H, et al. SALL4 is a new target in endometrial cancer. Oncogene. 2015;34(1):63–72.PubMedCrossRef
14.
go back to reference Zhang X, Zhang P, Shao M, Zang X, Zhang J, Mao F, Qian H, Xu W. SALL4 activates TGF-β/SMAD signaling pathway to induce EMT and promote gastric cancer metastasis. Cancer Manage Res. 2018;10:4459–70.CrossRef Zhang X, Zhang P, Shao M, Zang X, Zhang J, Mao F, Qian H, Xu W. SALL4 activates TGF-β/SMAD signaling pathway to induce EMT and promote gastric cancer metastasis. Cancer Manage Res. 2018;10:4459–70.CrossRef
15.
go back to reference Liu L, Zhang J, Yang X, Fang C, Xu H, Xi X. SALL4 as an epithelial-mesenchymal transition and Drug Resistance Inducer through the regulation of c-Myc in Endometrial Cancer. PLoS ONE. 2015;10(9):e0138515–5.PubMedPubMedCentralCrossRef Liu L, Zhang J, Yang X, Fang C, Xu H, Xi X. SALL4 as an epithelial-mesenchymal transition and Drug Resistance Inducer through the regulation of c-Myc in Endometrial Cancer. PLoS ONE. 2015;10(9):e0138515–5.PubMedPubMedCentralCrossRef
16.
go back to reference Kim J, Xu S, Xiong L, Yu L, Fu X, Xu Y. SALL4 promotes glycolysis and chromatin remodeling via modulating HP1α-Glut1 pathway. Oncogene. 2017;36(46):6472–9.PubMedCrossRef Kim J, Xu S, Xiong L, Yu L, Fu X, Xu Y. SALL4 promotes glycolysis and chromatin remodeling via modulating HP1α-Glut1 pathway. Oncogene. 2017;36(46):6472–9.PubMedCrossRef
17.
go back to reference Uez N, Lickert H, Kohlhase J, de Angelis MH, Kühn R, Wurst W, Floss T. Sall4 isoforms act during proximal-distal and anterior-posterior axis formation in the mouse embryo. Genesis (New York NY: 2000). 2008;46(9):463–77.CrossRef Uez N, Lickert H, Kohlhase J, de Angelis MH, Kühn R, Wurst W, Floss T. Sall4 isoforms act during proximal-distal and anterior-posterior axis formation in the mouse embryo. Genesis (New York NY: 2000). 2008;46(9):463–77.CrossRef
18.
go back to reference Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17(11):1359–70.PubMedCrossRef Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17(11):1359–70.PubMedCrossRef
19.
go back to reference Yong KJ, Li A, Ou W-B, Hong CKY, Zhao W, Wang F, Tatetsu H, Yan B, Qi L, Fletcher JA, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7(46):75425–40.PubMedPubMedCentralCrossRef Yong KJ, Li A, Ou W-B, Hong CKY, Zhao W, Wang F, Tatetsu H, Yan B, Qi L, Fletcher JA, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7(46):75425–40.PubMedPubMedCentralCrossRef
20.
go back to reference Jiang G, Liu C-T. Knockdown of SALL4 overcomes cisplatin-resistance through AKT/mTOR signaling in lung cancer cells. Int J Clin Exp Pathol. 2018;11(2):634–41.PubMedPubMedCentral Jiang G, Liu C-T. Knockdown of SALL4 overcomes cisplatin-resistance through AKT/mTOR signaling in lung cancer cells. Int J Clin Exp Pathol. 2018;11(2):634–41.PubMedPubMedCentral
21.
go back to reference Donovan KA, An J, Nowak RP, Yuan JC, Fink EC, Berry BC, Ebert BL, Fischer ES. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife. 2018;7:e38430.PubMedPubMedCentralCrossRef Donovan KA, An J, Nowak RP, Yuan JC, Fink EC, Berry BC, Ebert BL, Fischer ES. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife. 2018;7:e38430.PubMedPubMedCentralCrossRef
22.
go back to reference Rao S, Zhen S, Roumiantsev S, McDonald LT, Yuan G-C, Orkin SH. Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol. 2010;30(22):5364–80.PubMedPubMedCentralCrossRef Rao S, Zhen S, Roumiantsev S, McDonald LT, Yuan G-C, Orkin SH. Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol. 2010;30(22):5364–80.PubMedPubMedCentralCrossRef
23.
go back to reference Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovascular Res. 2005;65(3):550–63.CrossRef Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovascular Res. 2005;65(3):550–63.CrossRef
24.
go back to reference Yoshiji H, Harris SR, Thorgeirsson UP. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res. 1997;57(18):3924–8.PubMed Yoshiji H, Harris SR, Thorgeirsson UP. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res. 1997;57(18):3924–8.PubMed
25.
go back to reference Giavazzi R, Sennino B, Coltrini D, Garofalo A, Dossi R, Ronca R, Tosatti MPM, Presta M. Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. Am J Pathol. 2003;162(6):1913–26.PubMedPubMedCentralCrossRef Giavazzi R, Sennino B, Coltrini D, Garofalo A, Dossi R, Ronca R, Tosatti MPM, Presta M. Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. Am J Pathol. 2003;162(6):1913–26.PubMedPubMedCentralCrossRef
26.
go back to reference Sun J, Zhao Z, Zhang W, Tang Q, Yang F, Hu X, Liu C, Song B, Zhang B, Wang H. Spalt-Like protein 4 (SALL4) promotes angiogenesis by activating vascular endothelial growth factor A (VEGFA) signaling. Med Sci Monit. 2020;26:e920851–1.PubMedPubMedCentral Sun J, Zhao Z, Zhang W, Tang Q, Yang F, Hu X, Liu C, Song B, Zhang B, Wang H. Spalt-Like protein 4 (SALL4) promotes angiogenesis by activating vascular endothelial growth factor A (VEGFA) signaling. Med Sci Monit. 2020;26:e920851–1.PubMedPubMedCentral
27.
go back to reference Sun J, Tang Q, Gao Y, Zhang W, Zhao Z, Yang F, Hu X, Zhang D, Wang Y, Zhang H. VHL mutation-mediated SALL4 overexpression promotes tumorigenesis and vascularization of clear cell renal cell carcinoma via Akt/GSK-3β signaling. J Experimental Clin Cancer Res. 2020;39:1–17.CrossRef Sun J, Tang Q, Gao Y, Zhang W, Zhao Z, Yang F, Hu X, Zhang D, Wang Y, Zhang H. VHL mutation-mediated SALL4 overexpression promotes tumorigenesis and vascularization of clear cell renal cell carcinoma via Akt/GSK-3β signaling. J Experimental Clin Cancer Res. 2020;39:1–17.CrossRef
28.
go back to reference Chen T, Tsang JY, Su XC, Li P, Sun WQ, Wong IL, Choy KY, Yang Q, Tse GM, Chan TH. SALL4 promotes tumor progression in breast cancer by targeting EMT. Mol Carcinog. 2020;59(10):1209–26.PubMedCrossRef Chen T, Tsang JY, Su XC, Li P, Sun WQ, Wong IL, Choy KY, Yang Q, Tse GM, Chan TH. SALL4 promotes tumor progression in breast cancer by targeting EMT. Mol Carcinog. 2020;59(10):1209–26.PubMedCrossRef
29.
go back to reference Yuan X, Zhang X, Zhang W, Liang W, Zhang P, Shi H, Zhang B, Shao M, Yan Y, Qian H, et al. SALL4 promotes gastric cancer progression through activating CD44 expression. Oncogenesis. 2016;5(11):e268–8.PubMedPubMedCentralCrossRef Yuan X, Zhang X, Zhang W, Liang W, Zhang P, Shi H, Zhang B, Shao M, Yan Y, Qian H, et al. SALL4 promotes gastric cancer progression through activating CD44 expression. Oncogenesis. 2016;5(11):e268–8.PubMedPubMedCentralCrossRef
30.
go back to reference Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE, Amin HM, Ward DC, Ma Y. Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Natl Acad Sci USA. 2007;104(25):10494–9.PubMedPubMedCentralCrossRef Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE, Amin HM, Ward DC, Ma Y. Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Natl Acad Sci USA. 2007;104(25):10494–9.PubMedPubMedCentralCrossRef
31.
go back to reference Li A, Yang Y, Gao C, Lu J, Jeong H-W, Liu BH, Tang P, Yao X, Neuberg D, Huang G, et al. A SALL4/MLL/HOXA9 pathway in murine and human myeloid leukemogenesis. J Clin Invest. 2013;123(10):4195–207.PubMedPubMedCentralCrossRef Li A, Yang Y, Gao C, Lu J, Jeong H-W, Liu BH, Tang P, Yao X, Neuberg D, Huang G, et al. A SALL4/MLL/HOXA9 pathway in murine and human myeloid leukemogenesis. J Clin Invest. 2013;123(10):4195–207.PubMedPubMedCentralCrossRef
32.
go back to reference Yang L, Liu L, Gao H, Pinnamaneni JP, Sanagasetti D, Singh VP, Wang K, Mathison M, Zhang Q, Chen F, et al. The stem cell factor SALL4 is an essential transcriptional regulator in mixed lineage leukemia-rearranged leukemogenesis. J Hematol Oncol. 2017;10(1):159–9.PubMedPubMedCentralCrossRef Yang L, Liu L, Gao H, Pinnamaneni JP, Sanagasetti D, Singh VP, Wang K, Mathison M, Zhang Q, Chen F, et al. The stem cell factor SALL4 is an essential transcriptional regulator in mixed lineage leukemia-rearranged leukemogenesis. J Hematol Oncol. 2017;10(1):159–9.PubMedPubMedCentralCrossRef
33.
go back to reference Liu Y-C, Kwon J, Fabiani E, Xiao Z, Liu YV, Follo MY, Liu J, Huang H, Gao C, Liu J. Demethylation and up-regulation of an oncogene after hypomethylating therapy. N Engl J Med. 2022;386(21):1998–2010.PubMedPubMedCentralCrossRef Liu Y-C, Kwon J, Fabiani E, Xiao Z, Liu YV, Follo MY, Liu J, Huang H, Gao C, Liu J. Demethylation and up-regulation of an oncogene after hypomethylating therapy. N Engl J Med. 2022;386(21):1998–2010.PubMedPubMedCentralCrossRef
34.
go back to reference Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327(5971):1345–50.PubMedCrossRef Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327(5971):1345–50.PubMedCrossRef
35.
go back to reference Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G. Thalidomide selectively inhibits tumor necrosis factor-alpha production by stimulated human monocytes. J Exp Med. 1991;173(3):699–703.PubMedCrossRef Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G. Thalidomide selectively inhibits tumor necrosis factor-alpha production by stimulated human monocytes. J Exp Med. 1991;173(3):699–703.PubMedCrossRef
36.
go back to reference D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proceedings of the National Academy of Sciences 1994, 91(9):4082–4085. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proceedings of the National Academy of Sciences 1994, 91(9):4082–4085.
37.
go back to reference Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M, Carpenter A. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol. 2018;14(10):981–7.PubMedCrossRef Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M, Carpenter A. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol. 2018;14(10):981–7.PubMedCrossRef
38.
go back to reference Komorowski J, Jerczyńska H, Siejka A, Barańska P, Ławnicka H, Pawłowska Z, Stępień H. Effect of thalidomide affecting VEGF secretion, cell migration, adhesion and capillary tube formation of human endothelial EA. hy 926 cells. Life Sci. 2006;78(22):2558–63.PubMedCrossRef Komorowski J, Jerczyńska H, Siejka A, Barańska P, Ławnicka H, Pawłowska Z, Stępień H. Effect of thalidomide affecting VEGF secretion, cell migration, adhesion and capillary tube formation of human endothelial EA. hy 926 cells. Life Sci. 2006;78(22):2558–63.PubMedCrossRef
39.
go back to reference Zheng W, Fu L. Effect of thalidomide combined with TP chemotherapy on serum VEGF and NRP-1 levels advanced esophageal cancer patients. Am J Translational Res. 2021;13(9):10809. Zheng W, Fu L. Effect of thalidomide combined with TP chemotherapy on serum VEGF and NRP-1 levels advanced esophageal cancer patients. Am J Translational Res. 2021;13(9):10809.
40.
go back to reference Zhang X, Luo H. Effects of thalidomide on growth and VEGF-A expression in SW480 colon cancer cells. Oncol Lett. 2018;15(3):3313–20.PubMed Zhang X, Luo H. Effects of thalidomide on growth and VEGF-A expression in SW480 colon cancer cells. Oncol Lett. 2018;15(3):3313–20.PubMed
41.
go back to reference Tong C, Liu H, Chen R, Zhu F. The effect of TACE in combination with thalidomide-mediated adjuvant therapy on the levels of VEGF and bFGF in patients with hepatocellular carcinoma. Am J Translational Res. 2021;13(5):5575. Tong C, Liu H, Chen R, Zhu F. The effect of TACE in combination with thalidomide-mediated adjuvant therapy on the levels of VEGF and bFGF in patients with hepatocellular carcinoma. Am J Translational Res. 2021;13(5):5575.
42.
go back to reference Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018;30(29):1705328.CrossRef Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018;30(29):1705328.CrossRef
43.
go back to reference Wang-Gillam A, Hubner RA, Siveke JT, Von Hoff DD, Belanger B, de Jong FA, Mirakhur B, Chen L-T. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: final overall survival analysis and characteristics of long-term survivors. Eur J Cancer. 2019;108:78–87.PubMedCrossRef Wang-Gillam A, Hubner RA, Siveke JT, Von Hoff DD, Belanger B, de Jong FA, Mirakhur B, Chen L-T. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: final overall survival analysis and characteristics of long-term survivors. Eur J Cancer. 2019;108:78–87.PubMedCrossRef
44.
go back to reference Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed Nanotechnol Biol Med. 2016;12(3):655–64.CrossRef Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed Nanotechnol Biol Med. 2016;12(3):655–64.CrossRef
45.
go back to reference Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106:148–56.PubMedCrossRef Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106:148–56.PubMedCrossRef
46.
go back to reference Tran T-H, Mattheolabakis G, Aldawsari H, Amiji M. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clin Immunol. 2015;160(1):46–58.PubMedCrossRef Tran T-H, Mattheolabakis G, Aldawsari H, Amiji M. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clin Immunol. 2015;160(1):46–58.PubMedCrossRef
47.
go back to reference Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, Sun B, Chen B, Xiao Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnol. 2020;18(1):1–15.CrossRef Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, Sun B, Chen B, Xiao Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnol. 2020;18(1):1–15.CrossRef
48.
go back to reference Shan S, Chen J, Sun Y, Wang Y, Xia B, Tan H, Pan C, Gu G, Zhong J, Qing G. Functionalized macrophage exosomes with panobinostat and PPM1D-siRNA for diffuse intrinsic pontine gliomas therapy. Adv Sci 2022:2200353. Shan S, Chen J, Sun Y, Wang Y, Xia B, Tan H, Pan C, Gu G, Zhong J, Qing G. Functionalized macrophage exosomes with panobinostat and PPM1D-siRNA for diffuse intrinsic pontine gliomas therapy. Adv Sci 2022:2200353.
49.
go back to reference Ma Y-S, Liu J-B, Lin L, Zhang H, Wu J-J, Shi Y, Jia C-Y, Zhang D-D, Yu F, Wang H-M. Exosomal microRNA-15a from mesenchymal stem cells impedes hepatocellular carcinoma progression via downregulation of SALL4. Cell death discovery. 2021;7(1):224.PubMedPubMedCentralCrossRef Ma Y-S, Liu J-B, Lin L, Zhang H, Wu J-J, Shi Y, Jia C-Y, Zhang D-D, Yu F, Wang H-M. Exosomal microRNA-15a from mesenchymal stem cells impedes hepatocellular carcinoma progression via downregulation of SALL4. Cell death discovery. 2021;7(1):224.PubMedPubMedCentralCrossRef
50.
go back to reference Yin C, Han Q, Xu D, Zheng B, Zhao X, Zhang J. SALL4-mediated upregulation of exosomal miR-146a-5p drives T-cell exhaustion by M2 tumor-associated macrophages in HCC. Oncoimmunology. 2019;8(7):1601479–9.PubMedPubMedCentralCrossRef Yin C, Han Q, Xu D, Zheng B, Zhao X, Zhang J. SALL4-mediated upregulation of exosomal miR-146a-5p drives T-cell exhaustion by M2 tumor-associated macrophages in HCC. Oncoimmunology. 2019;8(7):1601479–9.PubMedPubMedCentralCrossRef
Metadata
Title
SALL4 promotes angiogenesis in gastric cancer by regulating VEGF expression and targeting SALL4/VEGF pathway inhibits cancer progression
Authors
Fatma A. Abouelnazar
Xiaoxin Zhang
Jiahui Zhang
Maoye Wang
Dan Yu
Xueyan Zang
Jiayin Zhang
Yixin Li
Jing Xu
Qiurong Yang
Yue Zhou
Haozhou Tang
Yanzheng Wang
Jianmei Gu
Xu Zhang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2023
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-023-02985-9

Other articles of this Issue 1/2023

Cancer Cell International 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine