Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Colorectal Cancer | Research

Induction of apoptosis and cell cycle arrest in colorectal cancer cells by novel anticancer metabolites of Streptomyces sp. 801

Authors: Arghavan Kouroshnia, Sirous Zeinali, Shiva Irani, Akram Sadeghi

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Colorectal cancer is the third and most significant cause of death and fourth most common cancer in the world. Chemotherapy can be introduced in the cases of locally or distantly invasive colorectal cancer. In recent years Actinomycetes, especially the genus Streptomyces, contain numerous bioactive compounds, some of which are known as important anti-tumor chemotherapy drugs. In this research, we aimed to explore the anti-cancer mode of action of Streptomyces sp. 801 on colorectal cancer cells in vitro conditions.

Methods

Fermented supernatant of strain Streptomyces sp. 801 isolated from soil showed maximum growth inhibition on human colorectal cancer cells. The cytotoxic effects of various concentrations of EtOAc extract from bacterial culture supernatant on HT-29, HCT 116 and SW480 cancer cells were surveyed using the MTT assay. Moreover, flow cytometry assays and Bax, Bcl-2, Cyclin D1 and P21 gene expressions were carried out to assess the apoptotic and cell cycle effects. Also, the scratch assay was performed to measure migration. Finally, Ethyl acetate (EtOAc) extract was analyzed by LC–MS to identify anti-cancer compounds.

Results

The cell viability of all three cell lines were decreased in a dose-dependent manner. The successful induction of apoptosis and cell cycle arrest at IC50 values, were confirmed by flow cytometry as well as by the mRNA expression levels of the genes involved in these processes. Scratch assays indicated the inhibition of cell migration in the cancer cell lines treated by Streptomyces sp. 801. Nine anti-cancer compounds of Streptomyces sp. 801 were detected by liquid chromatography–mass spectrometry (LC–MS) analysis.

Conclusions

These findings suggest that Streptomyces sp. 801 can be a source of promising anticancer metabolites.

Graphical Abstract

Literature
1.
go back to reference Pamudurthy V, Lodhia N, Konda VJ, editors. Advances in endoscopy for colorectal polyp detection and classification. Baylor University Medical Center Proceedings; 2020: Taylor & Francis. Pamudurthy V, Lodhia N, Konda VJ, editors. Advances in endoscopy for colorectal polyp detection and classification. Baylor University Medical Center Proceedings; 2020: Taylor & Francis.
2.
go back to reference Ahmed M. Colon cancer: a clinician’s perspective in 2019. Gastroenterol Res. 2020;13(1):1.CrossRef Ahmed M. Colon cancer: a clinician’s perspective in 2019. Gastroenterol Res. 2020;13(1):1.CrossRef
3.
go back to reference Lu L, Mullins CS, Schafmayer C, Zeißig S, Linnebacher M. A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun. 2021;41(11):1137–51.CrossRef Lu L, Mullins CS, Schafmayer C, Zeißig S, Linnebacher M. A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun. 2021;41(11):1137–51.CrossRef
4.
go back to reference El-Badrawy A, Shebel H, El Atta HMA. MDCT diagnosis of synchronous primary gastrointestinal tract carcinoma and other solid malignancies: case series study. Egypt J Radiol Nuclear Med. 2022;53(1):1–6.CrossRef El-Badrawy A, Shebel H, El Atta HMA. MDCT diagnosis of synchronous primary gastrointestinal tract carcinoma and other solid malignancies: case series study. Egypt J Radiol Nuclear Med. 2022;53(1):1–6.CrossRef
5.
go back to reference Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin D, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–53.PubMedCrossRef Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin D, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–53.PubMedCrossRef
6.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef
7.
8.
go back to reference Lu B, Li N, Luo C-Y, Cai J, Lu M, Zhang Y-H, et al. Colorectal cancer incidence and mortality: the current status, temporal trends and their attributable risk factors in 60 countries in 2000–2019. Chin Med J. 2021;134(16):1941–51.PubMedPubMedCentralCrossRef Lu B, Li N, Luo C-Y, Cai J, Lu M, Zhang Y-H, et al. Colorectal cancer incidence and mortality: the current status, temporal trends and their attributable risk factors in 60 countries in 2000–2019. Chin Med J. 2021;134(16):1941–51.PubMedPubMedCentralCrossRef
9.
go back to reference Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22.CrossRef Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22.CrossRef
10.
go back to reference Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Przeglad Gastroenterologiczny. 2019;14(2):89.PubMedPubMedCentral Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Przeglad Gastroenterologiczny. 2019;14(2):89.PubMedPubMedCentral
11.
go back to reference Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–64.PubMedCrossRef Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–64.PubMedCrossRef
12.
go back to reference Din Saad El, Loree K, Sayre JM, Gill EC, Brown S, Dau CJ, et al. Trends in the epidemiology of young-onset colorectal cancer: a worldwide systematic review. BMC Cancer. 2020;20:1–14. Din Saad El, Loree K, Sayre JM, Gill EC, Brown S, Dau CJ, et al. Trends in the epidemiology of young-onset colorectal cancer: a worldwide systematic review. BMC Cancer. 2020;20:1–14.
13.
go back to reference Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5(1):1–30. Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5(1):1–30.
14.
go back to reference Grothey A, Clark JW. Patient education: colorectal cancer treatment; metastatic cancer (Beyond the Basics). Grothey A, Clark JW. Patient education: colorectal cancer treatment; metastatic cancer (Beyond the Basics).
15.
go back to reference Aoullay Z, Slaoui M, Razine R, Er-Raki A, Meddah B, Cherrah Y. Therapeutic characteristics, chemotherapy-related toxicities and survivorship in colorectal cancer patients. Ethiop J Health Sci. 2020;30(1):65–74.PubMedPubMedCentral Aoullay Z, Slaoui M, Razine R, Er-Raki A, Meddah B, Cherrah Y. Therapeutic characteristics, chemotherapy-related toxicities and survivorship in colorectal cancer patients. Ethiop J Health Sci. 2020;30(1):65–74.PubMedPubMedCentral
16.
go back to reference Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803.PubMedCrossRef Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803.PubMedCrossRef
17.
go back to reference Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 2016;80(1):1–43.PubMedCrossRef Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 2016;80(1):1–43.PubMedCrossRef
18.
go back to reference Valli S, Suvathi SS, Aysha O, Nirmala P, Vinoth KP, Reena A. Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pac J Trop Biomed. 2012;2(6):469–73.PubMedPubMedCentralCrossRef Valli S, Suvathi SS, Aysha O, Nirmala P, Vinoth KP, Reena A. Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pac J Trop Biomed. 2012;2(6):469–73.PubMedPubMedCentralCrossRef
19.
go back to reference Petrova DH, Shishkov SA, Vlahov SS. Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: purification and some properties. J Basic Microbiol. 2006;46(4):275–85.PubMedCrossRef Petrova DH, Shishkov SA, Vlahov SS. Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: purification and some properties. J Basic Microbiol. 2006;46(4):275–85.PubMedCrossRef
20.
go back to reference Sankaranarayanan R, Sekhon PK, Ambat A, Nelson J, Jose D, Bhat GJ, et al. Screening of human gut bacterial culture collection identifies species that biotransform quercetin into metabolites with anticancer properties. Int J Mol Sci. 2021;22(13):7045.PubMedPubMedCentralCrossRef Sankaranarayanan R, Sekhon PK, Ambat A, Nelson J, Jose D, Bhat GJ, et al. Screening of human gut bacterial culture collection identifies species that biotransform quercetin into metabolites with anticancer properties. Int J Mol Sci. 2021;22(13):7045.PubMedPubMedCentralCrossRef
22.
go back to reference Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70(3):461–77.PubMedCrossRef Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70(3):461–77.PubMedCrossRef
23.
go back to reference Jose PA, Sivakala KK, Jha B. Non-streptomyces actinomycetes and natural products: recent updates. Stud Nat Prod Chem. 2019;61:395–409.CrossRef Jose PA, Sivakala KK, Jha B. Non-streptomyces actinomycetes and natural products: recent updates. Stud Nat Prod Chem. 2019;61:395–409.CrossRef
24.
go back to reference Subbaiya R, Saravanan M, Priya AR, Shankar KR, Selvam M, Ovais M, et al. Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol. 2017;11(8):965–72.PubMedPubMedCentralCrossRef Subbaiya R, Saravanan M, Priya AR, Shankar KR, Selvam M, Ovais M, et al. Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol. 2017;11(8):965–72.PubMedPubMedCentralCrossRef
25.
go back to reference Davies-Bolorunduro OF, Adeleye IA, Akinleye MO, Wang PG. Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment. J Pharm Anal. 2019;9(3):201–8.PubMedPubMedCentralCrossRef Davies-Bolorunduro OF, Adeleye IA, Akinleye MO, Wang PG. Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment. J Pharm Anal. 2019;9(3):201–8.PubMedPubMedCentralCrossRef
26.
go back to reference Elmallah MI, Cogo S, Constantinescu AA, Elifio-Esposito S, Abdelfattah MS, Micheau O. Marine Actinomycetes-derived secondary metabolites overcome trail-resistance via the intrinsic pathway through downregulation of survivin and XIAP. Cells. 2020;9(8):1760.PubMedCentralCrossRef Elmallah MI, Cogo S, Constantinescu AA, Elifio-Esposito S, Abdelfattah MS, Micheau O. Marine Actinomycetes-derived secondary metabolites overcome trail-resistance via the intrinsic pathway through downregulation of survivin and XIAP. Cells. 2020;9(8):1760.PubMedCentralCrossRef
27.
go back to reference Shah AM, Wani A, Qazi PH, Rehman S-u, Mushtaq S, Ali SA, et al. Isolation and characterization of alborixin from Streptomyces scabrisporus: a potent cytotoxic agent against human colon (HCT-116) cancer cells. Chemico-biological interactions. 2016;256:198–208.PubMedCrossRef Shah AM, Wani A, Qazi PH, Rehman S-u, Mushtaq S, Ali SA, et al. Isolation and characterization of alborixin from Streptomyces scabrisporus: a potent cytotoxic agent against human colon (HCT-116) cancer cells. Chemico-biological interactions. 2016;256:198–208.PubMedCrossRef
28.
go back to reference Silva LJ, Crevelin EJ, Souza DT, Lacerda-Júnior GV, de Oliveira VM, Ruiz ALTG, et al. Actinobacteria from Antarctica as a source for anticancer discovery. Sci Rep. 2020;10(1):1–15.CrossRef Silva LJ, Crevelin EJ, Souza DT, Lacerda-Júnior GV, de Oliveira VM, Ruiz ALTG, et al. Actinobacteria from Antarctica as a source for anticancer discovery. Sci Rep. 2020;10(1):1–15.CrossRef
29.
go back to reference McQuade M, Stojanovska R, Bornstein V C, Nurgali J. Colorectal cancer chemotherapy: the evolution of treatment and new approaches. Curr Med Chem. 2017;24(15):1537–57.PubMedCrossRef McQuade M, Stojanovska R, Bornstein V C, Nurgali J. Colorectal cancer chemotherapy: the evolution of treatment and new approaches. Curr Med Chem. 2017;24(15):1537–57.PubMedCrossRef
30.
go back to reference Liu G, Wang M, He H, Li J. Doxorubicin-loaded tumor-targeting peptide-decorated polypeptide nanoparticles for treating primary Orthotopic Colon Cancer. Front Pharmacol. 2021;12:2675. Liu G, Wang M, He H, Li J. Doxorubicin-loaded tumor-targeting peptide-decorated polypeptide nanoparticles for treating primary Orthotopic Colon Cancer. Front Pharmacol. 2021;12:2675.
31.
go back to reference Abdel-Rahman O, Koski S, Mulder K. Real-world patterns of chemotherapy administration and attrition among patients with metastatic colorectal cancer. Int J Colorectal Dis. 2021;36(3):493–9.PubMedCrossRef Abdel-Rahman O, Koski S, Mulder K. Real-world patterns of chemotherapy administration and attrition among patients with metastatic colorectal cancer. Int J Colorectal Dis. 2021;36(3):493–9.PubMedCrossRef
33.
go back to reference Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers. 2021;13(9):2025.PubMedPubMedCentralCrossRef Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers. 2021;13(9):2025.PubMedPubMedCentralCrossRef
34.
go back to reference Sadeghi A, Koobaz P, Azimi H, Karimi E, Akbari AR. Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl. 2017;62(6):805–19.CrossRef Sadeghi A, Koobaz P, Azimi H, Karimi E, Akbari AR. Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl. 2017;62(6):805–19.CrossRef
35.
go back to reference Xiao JF, Zhou B, Ressom HW. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. TrAC Trends Anal Chem. 2012;32:1–14.CrossRef Xiao JF, Zhou B, Ressom HW. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. TrAC Trends Anal Chem. 2012;32:1–14.CrossRef
36.
go back to reference Ferreira EG, Torres MdCM, da Silva AB, Colares LL, Pires K, Lotufo TM, et al. Prospecting anticancer compounds in actinomycetes recovered from the sediments of Saint Peter and Saint Paul’s Archipelago, Brazil. Chem Biodivers. 2016;13(9):1149–57.PubMedCrossRef Ferreira EG, Torres MdCM, da Silva AB, Colares LL, Pires K, Lotufo TM, et al. Prospecting anticancer compounds in actinomycetes recovered from the sediments of Saint Peter and Saint Paul’s Archipelago, Brazil. Chem Biodivers. 2016;13(9):1149–57.PubMedCrossRef
37.
go back to reference Burns J. Exploitation of underused Streptomyces through a combined metabolomics-genomics workflow to enhance natural product diversity 2020. Burns J. Exploitation of underused Streptomyces through a combined metabolomics-genomics workflow to enhance natural product diversity 2020.
38.
go back to reference Raheem DJ, Tawfike AF, Abdelmohsen UR, Edrada-Ebel R, Fitzsimmons-Thoss V. Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta). Sci Rep. 2019;9(1):1–13.CrossRef Raheem DJ, Tawfike AF, Abdelmohsen UR, Edrada-Ebel R, Fitzsimmons-Thoss V. Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta). Sci Rep. 2019;9(1):1–13.CrossRef
39.
go back to reference Law JW-F, Law LN-S, Letchumanan V, Tan LT-H, Wong SH, Chan K-G, et al. Anticancer drug discovery from microbial sources: the unique mangrove streptomycetes. Molecules. 2020;25(22):5365.PubMedCentralCrossRef Law JW-F, Law LN-S, Letchumanan V, Tan LT-H, Wong SH, Chan K-G, et al. Anticancer drug discovery from microbial sources: the unique mangrove streptomycetes. Molecules. 2020;25(22):5365.PubMedCentralCrossRef
40.
go back to reference Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot. 2012;65(8):385–95.CrossRef Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot. 2012;65(8):385–95.CrossRef
41.
go back to reference Xia H, Zhan X, Mao X-M, Li Y-Q. The regulatory cascades of antibiotic production in Streptomyces. World J Microbiol Biotechnol. 2020;36(1):1–9.CrossRef Xia H, Zhan X, Mao X-M, Li Y-Q. The regulatory cascades of antibiotic production in Streptomyces. World J Microbiol Biotechnol. 2020;36(1):1–9.CrossRef
42.
go back to reference Moumbock AF, Gao M, Qaseem A, Li J, Kirchner PA, Ndingkokhar B, et al. StreptomeDB 3.0: an updated compendium of streptomycetes natural products. Nucleic Acids Res. 2021;49(D1):D600–4.CrossRef Moumbock AF, Gao M, Qaseem A, Li J, Kirchner PA, Ndingkokhar B, et al. StreptomeDB 3.0: an updated compendium of streptomycetes natural products. Nucleic Acids Res. 2021;49(D1):D600–4.CrossRef
43.
go back to reference Hong K, Gao A-H, Xie Q-Y, Gao HG, Zhuang L, Lin H-P, et al. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Marine Drugs. 2009;7(1):24–44.PubMedPubMedCentralCrossRef Hong K, Gao A-H, Xie Q-Y, Gao HG, Zhuang L, Lin H-P, et al. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Marine Drugs. 2009;7(1):24–44.PubMedPubMedCentralCrossRef
44.
go back to reference Sharma P, Dutta J, Thakur D. Future Prospects of Actinobacteria in Health and Industry. New and Future Developments in Microbial Biotechnology and Bioengineering. 2018: 305–24. Sharma P, Dutta J, Thakur D. Future Prospects of Actinobacteria in Health and Industry. New and Future Developments in Microbial Biotechnology and Bioengineering. 2018: 305–24.
45.
go back to reference Elmallah MI, Micheau O, Eid MAG, Hebishy A, Abdelfattah MS. Marine actinomycete crude extracts with potent TRAIL-resistance overcoming activity against breast cancer cells. Oncol Rep. 2017;37(6):3635–42.PubMedCrossRef Elmallah MI, Micheau O, Eid MAG, Hebishy A, Abdelfattah MS. Marine actinomycete crude extracts with potent TRAIL-resistance overcoming activity against breast cancer cells. Oncol Rep. 2017;37(6):3635–42.PubMedCrossRef
46.
go back to reference Arai Y, Iinuma H, Ikeda Y, Igarashi M, Hatano M, Kinoshita N, et al. Migracins A and B, new inhibitors of cancer cell migration, produced by Streptomyces sp. J Antibiot. 2013;66(4):225–30.CrossRef Arai Y, Iinuma H, Ikeda Y, Igarashi M, Hatano M, Kinoshita N, et al. Migracins A and B, new inhibitors of cancer cell migration, produced by Streptomyces sp. J Antibiot. 2013;66(4):225–30.CrossRef
47.
go back to reference Ukaji T, Lin Y, Banno K, Okada S, Umezawa K. Inhibition of IGF-1-mediated cellular migration and invasion by migracin A in ovarian clear cell carcinoma cells. PLoS ONE. 2015;10(9):e0137663.PubMedPubMedCentralCrossRef Ukaji T, Lin Y, Banno K, Okada S, Umezawa K. Inhibition of IGF-1-mediated cellular migration and invasion by migracin A in ovarian clear cell carcinoma cells. PLoS ONE. 2015;10(9):e0137663.PubMedPubMedCentralCrossRef
48.
go back to reference Lin Y, Chen Y, Ukaji T, Okada S, Umezawa K. Isolation of ketomycin from Actinomycetes as an inhibitor of 2D and 3D cancer cell invasion. J Antibiot. 2019;72(3):148–54.CrossRef Lin Y, Chen Y, Ukaji T, Okada S, Umezawa K. Isolation of ketomycin from Actinomycetes as an inhibitor of 2D and 3D cancer cell invasion. J Antibiot. 2019;72(3):148–54.CrossRef
49.
go back to reference Chen Z, Han S, Huang W, Wu J, Liu Y, Cai S, et al. MicroRNA-215 suppresses cell proliferation, migration and invasion of colon cancer by repressing Yin-Yang 1. Biochem Biophys Res Commun. 2016;479(3):482–8.PubMedCrossRef Chen Z, Han S, Huang W, Wu J, Liu Y, Cai S, et al. MicroRNA-215 suppresses cell proliferation, migration and invasion of colon cancer by repressing Yin-Yang 1. Biochem Biophys Res Commun. 2016;479(3):482–8.PubMedCrossRef
50.
go back to reference Law JW-F, Chan K-G, He Y-W, Khan TM, Ab Mutalib N-S, Goh B-H, et al. Diversity of Streptomyces spp. from mangrove forest of Sarawak (Malaysia) and screening of their antioxidant and cytotoxic activities. Sci Rep. 2019;9(1):1–15.CrossRef Law JW-F, Chan K-G, He Y-W, Khan TM, Ab Mutalib N-S, Goh B-H, et al. Diversity of Streptomyces spp. from mangrove forest of Sarawak (Malaysia) and screening of their antioxidant and cytotoxic activities. Sci Rep. 2019;9(1):1–15.CrossRef
51.
go back to reference Tan LT-H, Chan C-K, Chan K-G, Pusparajah P, Khan TM, Ser H-L, et al. Streptomyces sp. MUM256: a source for apoptosis inducing and cell cycle-arresting bioactive compounds against colon cancer cells. Cancers. 2019;11(11):1742.PubMedCentralCrossRef Tan LT-H, Chan C-K, Chan K-G, Pusparajah P, Khan TM, Ser H-L, et al. Streptomyces sp. MUM256: a source for apoptosis inducing and cell cycle-arresting bioactive compounds against colon cancer cells. Cancers. 2019;11(11):1742.PubMedCentralCrossRef
52.
53.
go back to reference Er E, Oliver L, Cartron P-F, Juin P, Manon S, Vallette FM. Mitochondria as the target of the pro-apoptotic protein Bax. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2006;1757(9–10):1301–11.CrossRef Er E, Oliver L, Cartron P-F, Juin P, Manon S, Vallette FM. Mitochondria as the target of the pro-apoptotic protein Bax. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2006;1757(9–10):1301–11.CrossRef
55.
go back to reference Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55(3):178–94.PubMedCrossRef Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55(3):178–94.PubMedCrossRef
56.
go back to reference Zhang J, Su G, Lin Y, Meng W, Lai JKL, Qiao L, et al. Targeting cyclin-dependent kinases in gastrointestinal cancer therapy. Discov Med. 2019;27(146):27–36.PubMed Zhang J, Su G, Lin Y, Meng W, Lai JKL, Qiao L, et al. Targeting cyclin-dependent kinases in gastrointestinal cancer therapy. Discov Med. 2019;27(146):27–36.PubMed
57.
go back to reference Pasz-Walczak G, Kordek R, Faflik M. P21 (WAF1) expression in colorectal cancer: correlation with P53 and cyclin D1 expression, clinicopathological parameters and prognosis. Pathol Res Pract. 2001;197(10):683–9.PubMedCrossRef Pasz-Walczak G, Kordek R, Faflik M. P21 (WAF1) expression in colorectal cancer: correlation with P53 and cyclin D1 expression, clinicopathological parameters and prognosis. Pathol Res Pract. 2001;197(10):683–9.PubMedCrossRef
58.
go back to reference Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18(3):283–93.PubMedCrossRef Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18(3):283–93.PubMedCrossRef
59.
go back to reference Tetsu O, McCormick F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398(6726):422–6.PubMedCrossRef Tetsu O, McCormick F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398(6726):422–6.PubMedCrossRef
60.
go back to reference Arber N, Hibshoosh H, Moss SF, Sutter T, Zhang Y, Begg M, et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology. 1996;110(3):669–74.PubMedCrossRef Arber N, Hibshoosh H, Moss SF, Sutter T, Zhang Y, Begg M, et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology. 1996;110(3):669–74.PubMedCrossRef
61.
go back to reference Parker WB, Allan PW, Hassan AE, Secrist JA, Sorscher EJ, Waud WR. Antitumor activity of 2-fluoro-2′-deoxyadenosine against tumors that express Escherichia coli purine nucleoside phosphorylase. Cancer Gene Ther. 2003;10(1):23–9.PubMedCrossRef Parker WB, Allan PW, Hassan AE, Secrist JA, Sorscher EJ, Waud WR. Antitumor activity of 2-fluoro-2′-deoxyadenosine against tumors that express Escherichia coli purine nucleoside phosphorylase. Cancer Gene Ther. 2003;10(1):23–9.PubMedCrossRef
62.
go back to reference Zhang B-H, Chen W, Li H-Q, Zhou E-M, Hu W-Y, Duan Y-Q, et al. An antialgal compound produced by Streptomyces jiujiangensis JXJ 0074 T. Appl Microbiol Biotechnol. 2015;99(18):7673–83.PubMedCrossRef Zhang B-H, Chen W, Li H-Q, Zhou E-M, Hu W-Y, Duan Y-Q, et al. An antialgal compound produced by Streptomyces jiujiangensis JXJ 0074 T. Appl Microbiol Biotechnol. 2015;99(18):7673–83.PubMedCrossRef
63.
go back to reference Li Y, Hecht SS. Identification of an N′-Nitrosonornicotine-specific deoxyadenosine adduct in rat liver and lung DNA. Chem Res Toxicol. 2021;34(4):992–1003.PubMedPubMedCentralCrossRef Li Y, Hecht SS. Identification of an N′-Nitrosonornicotine-specific deoxyadenosine adduct in rat liver and lung DNA. Chem Res Toxicol. 2021;34(4):992–1003.PubMedPubMedCentralCrossRef
64.
go back to reference Law JW-F, Ser H-L, Ab Mutalib N-S, Saokaew S, Duangjai A, Khan TM, et al. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep. 2019;9(1):1–18.CrossRef Law JW-F, Ser H-L, Ab Mutalib N-S, Saokaew S, Duangjai A, Khan TM, et al. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep. 2019;9(1):1–18.CrossRef
65.
go back to reference Ser H-L, Yin W-F, Chan K-G, Khan TM, Goh B-H, Lee L-H. Antioxidant and cytotoxic potentials of Streptomyces gilvigriseus MUSC 26T isolated from mangrove soil in Malaysia. Progr Microbes Mol Biol. 2018;1(1). Ser H-L, Yin W-F, Chan K-G, Khan TM, Goh B-H, Lee L-H. Antioxidant and cytotoxic potentials of Streptomyces gilvigriseus MUSC 26T isolated from mangrove soil in Malaysia. Progr Microbes Mol Biol. 2018;1(1).
Metadata
Title
Induction of apoptosis and cell cycle arrest in colorectal cancer cells by novel anticancer metabolites of Streptomyces sp. 801
Authors
Arghavan Kouroshnia
Sirous Zeinali
Shiva Irani
Akram Sadeghi
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02656-1

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine