Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Primary research

MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma

Authors: Xing Wang, Yu-Qiang Shan, Qing-Quan Tan, Chun-Lu Tan, Hao Zhang, Jin-Heng Liu, Neng-Wen Ke, Yong-Hua Chen, Xu-Bao Liu

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Pancreatic ductal adenocarcinoma (PDA) is one of the most serious causes of death in the world due to its high mortality and inefficacy treatments. MEX3A was first identified in nematodes and was associated with tumor formation and may promote cell proliferation and tumor metastasis. So far, nothing is known about the relationship between MEX3A and PDA.

Methods

In this study, the expression level of MEX3A in PDA tissues was measured by immunohistochemistry. The qRT-PCR and western blot were used to identify the constructed MEX3A knockdown cell lines, which was further used to construct mouse xenotransplantation models. Cell proliferation, colony formation, cell apoptosis and migration were detected by MTT, colony formation, flow cytometry and Transwell.

Results

This study showed that MEX3A expression is significantly upregulated in PDA and associated with tumor grade. Loss-of-function studies showed that downregulation of MEX3A could inhibit cell growth in vitro and in vivo. Moreover, it was demonstrated that knockdown of MEX3A in PDA cells promotes apoptosis by regulating apoptosis-related factors, and inhibits migration through influencing EMT. At the same time, the regulation of PDA progression by MEX3A involves changes in downstream signaling pathways including Akt, p-Akt, PIK3CA, CDK6 and MAPK9.

Conclusions

We proposed that MEX3A is associated with the prognosis and progression of PDA,which can be used as a potential therapeutic target.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRef
2.
4.
go back to reference McGuigan A, et al. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24(43):4846–61.PubMedPubMedCentralCrossRef McGuigan A, et al. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24(43):4846–61.PubMedPubMedCentralCrossRef
5.
go back to reference Neesse A, et al. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut. 2019;68(1):159–71.PubMedCrossRef Neesse A, et al. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut. 2019;68(1):159–71.PubMedCrossRef
6.
go back to reference Marasini B, Sahu RP. Natural anti-cancer agents: implications in gemcitabine-resistant pancreatic cancer treatment. Mini Rev Med Chem. 2017;17(11):920–7.PubMedCrossRef Marasini B, Sahu RP. Natural anti-cancer agents: implications in gemcitabine-resistant pancreatic cancer treatment. Mini Rev Med Chem. 2017;17(11):920–7.PubMedCrossRef
8.
go back to reference de SSousa Cavalcante L, Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol. 2014;15(741):8–16.CrossRef de SSousa Cavalcante L, Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol. 2014;15(741):8–16.CrossRef
9.
go back to reference Ohmoto A, Yachida S, Morizane C. Genomic features and clinical management of patients with hereditary pancreatic cancer syndromes and familial pancreatic cancer. Int J Mol Sci. 2019;20(3):561.PubMedCentralCrossRef Ohmoto A, Yachida S, Morizane C. Genomic features and clinical management of patients with hereditary pancreatic cancer syndromes and familial pancreatic cancer. Int J Mol Sci. 2019;20(3):561.PubMedCentralCrossRef
10.
go back to reference Rajabpour A, Rajaei F, Teimoori-Toolabi L. Molecular alterations contributing to pancreatic cancer chemoresistance. Pancreatology. 2017;17(2):310–20.PubMedCrossRef Rajabpour A, Rajaei F, Teimoori-Toolabi L. Molecular alterations contributing to pancreatic cancer chemoresistance. Pancreatology. 2017;17(2):310–20.PubMedCrossRef
11.
go back to reference Buchet-Poyau K, Courchet J, Hir HL, et al. Identification and characterization of human Mex-3 proteins, a novel family of evolutionarily conserved RNA-binding proteins differentially localized to processing bodies. Nucleic acids Res. 2007;35(4):1289–300.PubMedPubMedCentralCrossRef Buchet-Poyau K, Courchet J, Hir HL, et al. Identification and characterization of human Mex-3 proteins, a novel family of evolutionarily conserved RNA-binding proteins differentially localized to processing bodies. Nucleic acids Res. 2007;35(4):1289–300.PubMedPubMedCentralCrossRef
12.
go back to reference Siomi H, Matunis MJ, Michael WM, et al. The pre-mRNA binding K protein contains a novel evolutionary conserved motif. Nucleic Acids Res. 1993;21(5):1193–8.PubMedPubMedCentralCrossRef Siomi H, Matunis MJ, Michael WM, et al. The pre-mRNA binding K protein contains a novel evolutionary conserved motif. Nucleic Acids Res. 1993;21(5):1193–8.PubMedPubMedCentralCrossRef
13.
go back to reference Krepischi AC, Maschietto M, Ferreira EN, et al. Genomic imbalances pinpoint potential oncogenes and tumor suppressors in Wilms tumors. Mol Cytogenet. 2016;9(1):20.PubMedPubMedCentralCrossRef Krepischi AC, Maschietto M, Ferreira EN, et al. Genomic imbalances pinpoint potential oncogenes and tumor suppressors in Wilms tumors. Mol Cytogenet. 2016;9(1):20.PubMedPubMedCentralCrossRef
14.
go back to reference Yang C. Knockdown of hMex-3A by small RNA interference suppresses cell proliferation and migration in human gastric cancer cells. Mol Med Rep. 2012;6(3):575–80.PubMedCrossRef Yang C. Knockdown of hMex-3A by small RNA interference suppresses cell proliferation and migration in human gastric cancer cells. Mol Med Rep. 2012;6(3):575–80.PubMedCrossRef
16.
go back to reference Jurmeister P, et al. Immunohistochemical analysis of Bcl-2, nuclear S100A4, MITF and Ki67 for risk stratification of early-stage melanoma—a combined IHC score for melanoma risk stratification. J Dtsch Dermatol Ges. 2019;17(8):800–8.PubMed Jurmeister P, et al. Immunohistochemical analysis of Bcl-2, nuclear S100A4, MITF and Ki67 for risk stratification of early-stage melanoma—a combined IHC score for melanoma risk stratification. J Dtsch Dermatol Ges. 2019;17(8):800–8.PubMed
17.
go back to reference Baumgart M, Groth M, Priebe S, et al. RNA-seq of the aging brain in the short-lived fish N. furzeri—conserved pathways and novel genes associated with neurogenesis. Aging Cell. 2014;13(6):965–74.PubMedPubMedCentralCrossRef Baumgart M, Groth M, Priebe S, et al. RNA-seq of the aging brain in the short-lived fish N. furzeri—conserved pathways and novel genes associated with neurogenesis. Aging Cell. 2014;13(6):965–74.PubMedPubMedCentralCrossRef
19.
go back to reference Shi JW, Huang Y. Mex3a expression and survival analysis of bladder urothelial carcinoma. Oncotarget. 2017;8(33):54764–74.PubMedPubMedCentral Shi JW, Huang Y. Mex3a expression and survival analysis of bladder urothelial carcinoma. Oncotarget. 2017;8(33):54764–74.PubMedPubMedCentral
22.
go back to reference Weingartner M, et al. Endogenous membrane tumor necrosis factor (TNF) is a potent amplifier of TNF receptor 1-mediated apoptosis. J Biol Chem. 2002;277(38):34853–9.PubMedCrossRef Weingartner M, et al. Endogenous membrane tumor necrosis factor (TNF) is a potent amplifier of TNF receptor 1-mediated apoptosis. J Biol Chem. 2002;277(38):34853–9.PubMedCrossRef
23.
go back to reference Knight T, et al. A delicate balance—the BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem Pharmacol. 2019;162:250–61.PubMedCrossRef Knight T, et al. A delicate balance—the BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem Pharmacol. 2019;162:250–61.PubMedCrossRef
24.
go back to reference Schafer C, et al. Heat shock protein 27 as a prognostic and predictive biomarker in pancreatic ductal adenocarcinoma. J Cell Mol Med. 2012;16(8):1776–91.PubMedPubMedCentralCrossRef Schafer C, et al. Heat shock protein 27 as a prognostic and predictive biomarker in pancreatic ductal adenocarcinoma. J Cell Mol Med. 2012;16(8):1776–91.PubMedPubMedCentralCrossRef
25.
go back to reference Momeny M, et al. Anti-tumor activity of cediranib, a pan-vascular endothelial growth factor receptor inhibitor, in pancreatic ductal adenocarcinoma cells. Cell Oncol. 2019;43(1):81–93.CrossRef Momeny M, et al. Anti-tumor activity of cediranib, a pan-vascular endothelial growth factor receptor inhibitor, in pancreatic ductal adenocarcinoma cells. Cell Oncol. 2019;43(1):81–93.CrossRef
27.
go back to reference David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Donahue CA, Massagué J. TGF-β tumor suppression through a lethal EMT. Cell. 2016;164(5):1015–30.PubMedPubMedCentralCrossRef David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Donahue CA, Massagué J. TGF-β tumor suppression through a lethal EMT. Cell. 2016;164(5):1015–30.PubMedPubMedCentralCrossRef
28.
go back to reference Chiang KC, Yeh CN, Hsu JT, et al. The vitamin D analog, MART-10, represses metastasis potential via downregulation of epithelial–mesenchymal transition in pancreatic cancer cells. Cancer Lett. 2014;354(2):235–44.PubMedCrossRef Chiang KC, Yeh CN, Hsu JT, et al. The vitamin D analog, MART-10, represses metastasis potential via downregulation of epithelial–mesenchymal transition in pancreatic cancer cells. Cancer Lett. 2014;354(2):235–44.PubMedCrossRef
29.
go back to reference Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75.PubMedCrossRef Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75.PubMedCrossRef
30.
go back to reference Payne SN, Maher ME, Tran NH, et al. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis. 2015;4(10):e169.PubMedPubMedCentralCrossRef Payne SN, Maher ME, Tran NH, et al. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis. 2015;4(10):e169.PubMedPubMedCentralCrossRef
31.
go back to reference Deeb D, Gao X, Liu Y, et al. The inhibition of cell proliferation and induction of apoptosis in pancreatic ductal adenocarcinoma cells by verrucarin A, a macrocyclic trichothecene, is associated with the inhibition of Akt/NF-кB/mTOR prosurvival signaling. Int J Oncol. 2016;49:1139–47.PubMedCrossRef Deeb D, Gao X, Liu Y, et al. The inhibition of cell proliferation and induction of apoptosis in pancreatic ductal adenocarcinoma cells by verrucarin A, a macrocyclic trichothecene, is associated with the inhibition of Akt/NF-кB/mTOR prosurvival signaling. Int J Oncol. 2016;49:1139–47.PubMedCrossRef
32.
go back to reference Liu F, Korc M. Cdk4/6 inhibition induces epithelial–mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012;11(10):2138–48.PubMedPubMedCentralCrossRef Liu F, Korc M. Cdk4/6 inhibition induces epithelial–mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012;11(10):2138–48.PubMedPubMedCentralCrossRef
33.
go back to reference Gkouveris I, Nikitakis NG. Role of JNK signaling in oral cancer: a mini review. Tumour Biol. 2017;39(6):1010428317711659.PubMedCrossRef Gkouveris I, Nikitakis NG. Role of JNK signaling in oral cancer: a mini review. Tumour Biol. 2017;39(6):1010428317711659.PubMedCrossRef
Metadata
Title
MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma
Authors
Xing Wang
Yu-Qiang Shan
Qing-Quan Tan
Chun-Lu Tan
Hao Zhang
Jin-Heng Liu
Neng-Wen Ke
Yong-Hua Chen
Xu-Bao Liu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-1146-x

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine