Skip to main content
Top
Published in: Cancer Cell International 1/2016

Open Access 01-12-2016 | Primary research

Hypoxia-induced modulation of PTEN activity and EMT phenotypes in lung cancers

Authors: Takashi Kohnoh, Naozumi Hashimoto, Akira Ando, Koji Sakamoto, Shinichi Miyazaki, Daisuke Aoyama, Masaaki Kusunose, Motohiro Kimura, Norihito Omote, Kazuyoshi Imaizumi, Tsutomu Kawabe, Yoshinori Hasegawa

Published in: Cancer Cell International | Issue 1/2016

Login to get access

Abstract

Background

Persistent hypoxia stimulation, one of the most critical microenvironmental factors, accelerates the acquisition of epithelial–mesenchymal transition (EMT) phenotypes in lung cancer cells. Loss of phosphatase and tensin homologue deleted from chromosome 10 (PTEN) expression might accelerate the development of lung cancer in vivo. Recent studies suggest that tumor microenvironmental factors might modulate the PTEN activity though a decrease in total PTEN expression and an increase in phosphorylation of the PTEN C-terminus (p-PTEN), resulting in the acquisition of the EMT phenotypes. Nevertheless, it is not known whether persistent hypoxia can modulate PTEN phosphatase activity or whether hypoxia-induced EMT phenotypes are negatively regulated by the PTEN phosphatase activity. We aimed to investigate hypoxia-induced modulation of PTEN activity and EMT phenotypes in lung cancers.

Methods

Western blotting was performed in five lung cancer cell lines to evaluate total PTEN expression levels and the PTEN activation. In a xenograft model of lung cancer cells with endogenous PTEN expression, the PTEN expression was evaluated by immunohistochemistry. To examine the effect of hypoxia on phenotypic alterations in lung cancer cells in vitro, the cells were cultured under hypoxia. The effect of unphosphorylated PTEN (PTEN4A) induction on hypoxia-induced EMT phenotypes was evaluated, by using a Dox-dependent gene expression system.

Results

Lung cancer cells involving the EMT phenotypes showed a decrease in total PTEN expression and an increase in p-PTEN. In a xenograft model, loss of PTEN expression was observed in the tumor lesions showing tissue hypoxia. Persistent hypoxia yielded an approximately eight-fold increase in the p-PTEN/PTEN ratio in vitro. PTEN4A did not affect stabilization of hypoxia-inducible factor 1α. PTEN4A blunted hypoxia-induced EMT via inhibition of β-catenin translocation into the cytoplasm and nucleus.

Conclusion

Our study strengthens the therapeutic possibility that compensatory induction of unphosphorylated PTEN may inhibit the acquisition of EMT phenotypes in lung cancer cells under persistent hypoxia.
Literature
3.
go back to reference Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.CrossRefPubMed Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.CrossRefPubMed
4.
go back to reference Page EL, Chan DA, Giaccia AJ, Levine M, Richard DE. Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion. Mol Biol Cell. 2008;19:86–94.CrossRefPubMedPubMedCentral Page EL, Chan DA, Giaccia AJ, Levine M, Richard DE. Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion. Mol Biol Cell. 2008;19:86–94.CrossRefPubMedPubMedCentral
5.
go back to reference Yang MH, Wu MZ, Chiou SH, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10:295–305.CrossRefPubMed Yang MH, Wu MZ, Chiou SH, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10:295–305.CrossRefPubMed
6.
go back to reference Sakamoto K, Hashimoto N, Kondoh Y, et al. Differential modulation of surfactant protein D under acute and persistent hypoxia in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;303:L43–53.CrossRefPubMed Sakamoto K, Hashimoto N, Kondoh Y, et al. Differential modulation of surfactant protein D under acute and persistent hypoxia in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;303:L43–53.CrossRefPubMed
7.
go back to reference Xi Y, Wei Y, Sennino B, et al. Identification of pY654-beta-catenin as a critical co-factor in hypoxia-inducible factor-1alpha signaling and tumor responses to hypoxia. Oncogene. 2012;32:5048–57.CrossRefPubMed Xi Y, Wei Y, Sennino B, et al. Identification of pY654-beta-catenin as a critical co-factor in hypoxia-inducible factor-1alpha signaling and tumor responses to hypoxia. Oncogene. 2012;32:5048–57.CrossRefPubMed
8.
go back to reference Higgins DF, Kimura K, Bernhardt WM, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117:3810–20.PubMedPubMedCentral Higgins DF, Kimura K, Bernhardt WM, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117:3810–20.PubMedPubMedCentral
9.
go back to reference Hashimoto N, Phan SH, Imaizumi K, et al. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2010;43:161–72.CrossRefPubMedPubMedCentral Hashimoto N, Phan SH, Imaizumi K, et al. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2010;43:161–72.CrossRefPubMedPubMedCentral
10.
go back to reference Davidson L, Maccario H, Perera NM, et al. Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN. Oncogene. 2010;29:687–97.CrossRefPubMedPubMedCentral Davidson L, Maccario H, Perera NM, et al. Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN. Oncogene. 2010;29:687–97.CrossRefPubMedPubMedCentral
11.
go back to reference David O, Jett J, LeBeau H, et al. Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res. 2004;10:6865–71.CrossRefPubMed David O, Jett J, LeBeau H, et al. Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res. 2004;10:6865–71.CrossRefPubMed
12.
go back to reference Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3 K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6:184–92.CrossRefPubMed Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3 K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6:184–92.CrossRefPubMed
13.
go back to reference Siesser PM, Hanks SK. The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res. 2006;12:3233–7.CrossRefPubMed Siesser PM, Hanks SK. The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res. 2006;12:3233–7.CrossRefPubMed
14.
go back to reference Yanagi S, Kishimoto H, Kawahara K, et al. Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J Clin Invest. 2007;117:2929–40.CrossRefPubMedPubMedCentral Yanagi S, Kishimoto H, Kawahara K, et al. Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J Clin Invest. 2007;117:2929–40.CrossRefPubMedPubMedCentral
15.
go back to reference Odriozola L, Singh G, Hoang T, Chan AM. Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J Biol Chem. 2007;282:23306–15.CrossRefPubMed Odriozola L, Singh G, Hoang T, Chan AM. Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J Biol Chem. 2007;282:23306–15.CrossRefPubMed
16.
go back to reference Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN. A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Natl Acad Sci. 2009;106:480–5.CrossRefPubMedPubMedCentral Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN. A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Natl Acad Sci. 2009;106:480–5.CrossRefPubMedPubMedCentral
17.
go back to reference Aoyama D, Hashimoto N, Sakamoto K, et al. Involvement of TGFbeta-induced phosphorylation of the PTEN C-terminus on TGFbeta-induced acquisition of malignant phenotypes in lung cancer cells. PLoS One. 2013;8:e81133.CrossRefPubMedPubMedCentral Aoyama D, Hashimoto N, Sakamoto K, et al. Involvement of TGFbeta-induced phosphorylation of the PTEN C-terminus on TGFbeta-induced acquisition of malignant phenotypes in lung cancer cells. PLoS One. 2013;8:e81133.CrossRefPubMedPubMedCentral
20.
go back to reference Nakashima H, Hashimoto N, Aoyama D, et al. Involvement of the transcription factor twist in phenotype alteration through epithelial-mesenchymal transition in lung cancer cells. Mol Carcinog. 2012;51:400–10.CrossRefPubMed Nakashima H, Hashimoto N, Aoyama D, et al. Involvement of the transcription factor twist in phenotype alteration through epithelial-mesenchymal transition in lung cancer cells. Mol Carcinog. 2012;51:400–10.CrossRefPubMed
21.
go back to reference Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell. 2008;19:4875–87.CrossRefPubMedPubMedCentral Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell. 2008;19:4875–87.CrossRefPubMedPubMedCentral
23.
go back to reference Morel AP, Hinkal GW, Thomas C, et al. EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet. 2012;8:e1002723.CrossRefPubMedPubMedCentral Morel AP, Hinkal GW, Thomas C, et al. EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet. 2012;8:e1002723.CrossRefPubMedPubMedCentral
24.
go back to reference Solanas G, Porta-de-la-Riva M, Agusti C, et al. E-cadherin controls beta-catenin and NF-kappaB transcriptional activity in mesenchymal gene expression. J Cell Sci. 2008;121:2224–34.CrossRefPubMed Solanas G, Porta-de-la-Riva M, Agusti C, et al. E-cadherin controls beta-catenin and NF-kappaB transcriptional activity in mesenchymal gene expression. J Cell Sci. 2008;121:2224–34.CrossRefPubMed
25.
go back to reference Harris TJ, Peifer M. Decisions, decisions: beta-catenin chooses between adhesion and transcription. Trends Cell Biol. 2005;15:234–7.CrossRefPubMed Harris TJ, Peifer M. Decisions, decisions: beta-catenin chooses between adhesion and transcription. Trends Cell Biol. 2005;15:234–7.CrossRefPubMed
26.
27.
go back to reference Kusunose M, Hashimoto N, Kimura M, et al. Direct regulation of transforming growth factor beta-induced epithelial-mesenchymal transition by the protein phosphatase activity of unphosphorylated PTEN in lung cancer cells. Cancer Sci. 2015;106:1693–704.CrossRefPubMedPubMedCentral Kusunose M, Hashimoto N, Kimura M, et al. Direct regulation of transforming growth factor beta-induced epithelial-mesenchymal transition by the protein phosphatase activity of unphosphorylated PTEN in lung cancer cells. Cancer Sci. 2015;106:1693–704.CrossRefPubMedPubMedCentral
28.
go back to reference Furnari FB, Lin H, Huang HS, Cavenee WK. Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci. 1997;94:12479–84.CrossRefPubMedPubMedCentral Furnari FB, Lin H, Huang HS, Cavenee WK. Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci. 1997;94:12479–84.CrossRefPubMedPubMedCentral
29.
go back to reference Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci. 1998;95:15406–11.CrossRefPubMedPubMedCentral Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci. 1998;95:15406–11.CrossRefPubMedPubMedCentral
30.
go back to reference Lima-Fernandes E, Enslen H, Camand E, et al. Distinct functional outputs of PTEN signalling are controlled by dynamic association with beta-arrestins. EMBO J. 2011;30:2557–68.CrossRefPubMedPubMedCentral Lima-Fernandes E, Enslen H, Camand E, et al. Distinct functional outputs of PTEN signalling are controlled by dynamic association with beta-arrestins. EMBO J. 2011;30:2557–68.CrossRefPubMedPubMedCentral
31.
go back to reference Lee HY, Srinivas H, Xia D, et al. Evidence that phosphatidylinositol 3-kinase- and mitogen-activated protein kinase kinase-4/c-Jun NH2-terminal kinase-dependent Pathways cooperate to maintain lung cancer cell survival. J Biol Chem. 2003;278:23630–8.CrossRefPubMed Lee HY, Srinivas H, Xia D, et al. Evidence that phosphatidylinositol 3-kinase- and mitogen-activated protein kinase kinase-4/c-Jun NH2-terminal kinase-dependent Pathways cooperate to maintain lung cancer cell survival. J Biol Chem. 2003;278:23630–8.CrossRefPubMed
32.
go back to reference Martins LR, Lucio P, Silva MC, et al. Targeting CK2 overexpression and hyperactivation as a novel therapeutic tool in chronic lymphocytic leukemia. Blood. 2010;116:2724–31.CrossRefPubMed Martins LR, Lucio P, Silva MC, et al. Targeting CK2 overexpression and hyperactivation as a novel therapeutic tool in chronic lymphocytic leukemia. Blood. 2010;116:2724–31.CrossRefPubMed
33.
go back to reference Shehata M, Schnabl S, Demirtas D, et al. Reconstitution of PTEN activity by CK2 inhibitors and interference with the PI3-K/Akt cascade counteract the antiapoptotic effect of human stromal cells in chronic lymphocytic leukemia. Blood. 2010;116:2513–21.CrossRefPubMed Shehata M, Schnabl S, Demirtas D, et al. Reconstitution of PTEN activity by CK2 inhibitors and interference with the PI3-K/Akt cascade counteract the antiapoptotic effect of human stromal cells in chronic lymphocytic leukemia. Blood. 2010;116:2513–21.CrossRefPubMed
34.
go back to reference Samoszuk MK, Walter J, Mechetner E. Improved immunohistochemical method for detecting hypoxia gradients in mouse tissues and tumors. J Histochem Cytochem. 2004;52:837–9.CrossRefPubMed Samoszuk MK, Walter J, Mechetner E. Improved immunohistochemical method for detecting hypoxia gradients in mouse tissues and tumors. J Histochem Cytochem. 2004;52:837–9.CrossRefPubMed
35.
go back to reference van der Bilt JD, Soeters ME, Duyverman AM, et al. Perinecrotic hypoxia contributes to ischemia/reperfusion-accelerated outgrowth of colorectal micrometastases. Am J Pathol. 2007;170:1379–88.CrossRefPubMedPubMedCentral van der Bilt JD, Soeters ME, Duyverman AM, et al. Perinecrotic hypoxia contributes to ischemia/reperfusion-accelerated outgrowth of colorectal micrometastases. Am J Pathol. 2007;170:1379–88.CrossRefPubMedPubMedCentral
36.
go back to reference Tarnawski A, Pai R, Deng X, et al. Aging gastropathy-novel mechanisms: hypoxia, up-regulation of multifunctional phosphatase PTEN, and proapoptotic factors. Gastroenterology. 2007;133:1938–47.CrossRefPubMed Tarnawski A, Pai R, Deng X, et al. Aging gastropathy-novel mechanisms: hypoxia, up-regulation of multifunctional phosphatase PTEN, and proapoptotic factors. Gastroenterology. 2007;133:1938–47.CrossRefPubMed
37.
go back to reference Nisbet RE, Bland JM, Kleinhenz DJ, et al. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Respir Cell Mol Biol. 2008;42:482–90.CrossRef Nisbet RE, Bland JM, Kleinhenz DJ, et al. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Respir Cell Mol Biol. 2008;42:482–90.CrossRef
38.
go back to reference Eliasz S, Liang S, Chen Y, et al. Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene. 2010;29:2488–98.CrossRefPubMedPubMedCentral Eliasz S, Liang S, Chen Y, et al. Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene. 2010;29:2488–98.CrossRefPubMedPubMedCentral
39.
go back to reference Zhang Q, Bai X, Chen W, et al. Wnt/beta-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1alpha signaling. Carcinogenesis. 2013;34:962–73.CrossRefPubMed Zhang Q, Bai X, Chen W, et al. Wnt/beta-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1alpha signaling. Carcinogenesis. 2013;34:962–73.CrossRefPubMed
40.
go back to reference Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E. Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. Faseb J. 2005;19:115–7.PubMed Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E. Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. Faseb J. 2005;19:115–7.PubMed
41.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed
42.
go back to reference Hashimoto N, Kawabe T, Imaizumi K, et al. CD40 plays a crucial role in lipopolysaccharide-induced acute lung injury. Am J Respir Cell Mol Biol. 2004;30:808–15.CrossRefPubMed Hashimoto N, Kawabe T, Imaizumi K, et al. CD40 plays a crucial role in lipopolysaccharide-induced acute lung injury. Am J Respir Cell Mol Biol. 2004;30:808–15.CrossRefPubMed
43.
go back to reference Takagi Y, Hashimoto N, Phan SH, et al. Erythromycin-induced CXCR4 expression on microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2009;297:L420–31.CrossRefPubMed Takagi Y, Hashimoto N, Phan SH, et al. Erythromycin-induced CXCR4 expression on microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2009;297:L420–31.CrossRefPubMed
44.
go back to reference Liu T, Nozaki Y, Phan SH. Regulation of telomerase activity in rat lung fibroblasts. Am J Respir Cell Mol Biol. 2002;26:534–40.CrossRefPubMed Liu T, Nozaki Y, Phan SH. Regulation of telomerase activity in rat lung fibroblasts. Am J Respir Cell Mol Biol. 2002;26:534–40.CrossRefPubMed
Metadata
Title
Hypoxia-induced modulation of PTEN activity and EMT phenotypes in lung cancers
Authors
Takashi Kohnoh
Naozumi Hashimoto
Akira Ando
Koji Sakamoto
Shinichi Miyazaki
Daisuke Aoyama
Masaaki Kusunose
Motohiro Kimura
Norihito Omote
Kazuyoshi Imaizumi
Tsutomu Kawabe
Yoshinori Hasegawa
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2016
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-016-0308-3

Other articles of this Issue 1/2016

Cancer Cell International 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine