Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2015

Open Access 01-12-2015 | Original investigation

Galectin-3 deficiency exacerbates hyperglycemia and the endothelial response to diabetes

Authors: April L. Darrow, Ralph V. Shohet

Published in: Cardiovascular Diabetology | Issue 1/2015

Login to get access

Abstract

Background

Diabetes promotes maladaptive changes in the endothelium that lead to its dysfunction and contribute to the vascular pathology of diabetes. We have previously reported the up-regulation of galectin-3, a β-galactoside-binding lectin, in the endothelium and sera of diabetic mice, implicating this molecule in diabetic vasculopathy and suggesting its potential as a biomarker of the disease. Therefore, we sought to assess the role of galectin-3 in the vascular pathology of diabetes.

Methods

Galectin-3 knockout mice (KO) and wild-type mice (WT) were fed either a high-fat diet (HFD) (60 % fat calories) to produce insulin resistant diabetes, or standard chow (12 % fat calories), and their metabolic and endothelial responses were measured. After 8 weeks, the aortic and skeletal muscle endothelia were isolated by fluorescence sorting of CD105+/CD45 cells and comprehensive transcriptional analyses were performed. Transcripts differentially dysregulated by HFD in KO endothelium compared to WT were confirmed by semi-quantitative RT-PCR, and protein expression was determined by immunofluorescence of aortic and muscle tissue. Ingenuity® Pathway Analysis was used to identify pathways up-regulated by HFD in the KO, such as the coagulation cascade, and measurements of blood clotting activity were performed to confirm these results.

Results

KO mice exhibit greater hyperglycemia and impaired glucose tolerance but lower insulin levels on HFD compared to WT. KO mice demonstrate a more robust transcriptional response to HFD in the vascular endothelium compared to WT. Transcripts dysregulated in the KO endothelium after HFD are involved in glucose uptake and insulin signaling, vasoregulation, coagulation, and atherogenesis. One of the most down-regulated transcripts in the endothelium of the KO after HFD was the glucose transporter, Glut4/Slc2a4. GLUT4 immunofluorescence confirmed lower protein abundance in the endothelium and muscle of the HFD-fed KO. Prothrombin time was decreased in the diabetic KO indicating increased coagulation activity.

Conclusions

Galectin-3 deficiency leads to exacerbated metabolic derangement and endothelial dysfunction. The impaired tissue uptake of glucose in KO mice can be attributed to the reduced expression of GLUT4. Enhanced coagulation activity in the diabetic KO suggests a protective role for galectin-3 against thrombosis. These studies demonstrate that galectin-3 deficiency contributes both to the pathogenesis of diabetes and the associated vasculopathy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Darrow AL, Shohet RV, Maresh JG. Transcriptional analysis of the endothelial response to diabetes reveals a role for galectin-3. Physiol Genomics. 2011;43(20):1144–52.PubMedCentralPubMedCrossRef Darrow AL, Shohet RV, Maresh JG. Transcriptional analysis of the endothelial response to diabetes reveals a role for galectin-3. Physiol Genomics. 2011;43(20):1144–52.PubMedCentralPubMedCrossRef
3.
go back to reference Weigert J, Neumeier M, Wanninger J, Bauer S, Farkas S, Scherer MN, et al. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. J Clin Endocrinol Metab. 2010;95(3):1404–11.PubMedCrossRef Weigert J, Neumeier M, Wanninger J, Bauer S, Farkas S, Scherer MN, et al. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. J Clin Endocrinol Metab. 2010;95(3):1404–11.PubMedCrossRef
4.
go back to reference Yilmaz H, Cakmak M, Inan O, Darcin T, Akcay A. Increased levels of galectin-3 were associated with prediabetes and diabetes: new risk factor? J Endocrinol Invest 2014, Dec 12[Epub ahead of print]. Yilmaz H, Cakmak M, Inan O, Darcin T, Akcay A. Increased levels of galectin-3 were associated with prediabetes and diabetes: new risk factor? J Endocrinol Invest 2014, Dec 12[Epub ahead of print].
5.
go back to reference Jin QH, Lou YF, Li TL, Chen HH, Liu Q, He XJ. Serum galectin-3: a risk factor for vascular complications in type 2 diabetes mellitus. Chin Med J (Engl). 2013;126(11):2109–15. Jin QH, Lou YF, Li TL, Chen HH, Liu Q, He XJ. Serum galectin-3: a risk factor for vascular complications in type 2 diabetes mellitus. Chin Med J (Engl). 2013;126(11):2109–15.
6.
go back to reference van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6(2):219–26.PubMedCrossRef van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6(2):219–26.PubMedCrossRef
7.
go back to reference Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(14):1249–56.PubMedCentralPubMedCrossRef Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(14):1249–56.PubMedCentralPubMedCrossRef
8.
go back to reference Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43(1):60–8.PubMedCentralPubMedCrossRef Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43(1):60–8.PubMedCentralPubMedCrossRef
9.
go back to reference Li SY, Davidson PJ, Lin NY, Patterson RJ, Wang JL, Arnoys EJ. Transport of galectin-3 between the nucleus and cytoplasm. II. Identification of the signal for nuclear export. Glycobiology. 2006;16(7):612–22.PubMedCrossRef Li SY, Davidson PJ, Lin NY, Patterson RJ, Wang JL, Arnoys EJ. Transport of galectin-3 between the nucleus and cytoplasm. II. Identification of the signal for nuclear export. Glycobiology. 2006;16(7):612–22.PubMedCrossRef
10.
go back to reference Dumic J, Dabelic S, Flogel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760(4):616–35.PubMedCrossRef Dumic J, Dabelic S, Flogel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760(4):616–35.PubMedCrossRef
11.
go back to reference Gil CD, La M, Perretti M, Oliani SM. Interaction of human neutrophils with endothelial cells regulates the expression of endogenous proteins annexin 1, galectin-1 and galectin-3. Cell Biol Int. 2006;30(4):338–44.PubMedCrossRef Gil CD, La M, Perretti M, Oliani SM. Interaction of human neutrophils with endothelial cells regulates the expression of endogenous proteins annexin 1, galectin-1 and galectin-3. Cell Biol Int. 2006;30(4):338–44.PubMedCrossRef
12.
go back to reference Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell. 2004;15(8):3580–90.PubMedCentralPubMedCrossRef Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell. 2004;15(8):3580–90.PubMedCentralPubMedCrossRef
13.
go back to reference Stitt AW, He C, Vlassara H. Characterization of the advanced glycation end-product receptor complex in human vascular endothelial cells. Biochem Biophys Res Commun. 1999;256(3):549–56.PubMedCrossRef Stitt AW, He C, Vlassara H. Characterization of the advanced glycation end-product receptor complex in human vascular endothelial cells. Biochem Biophys Res Commun. 1999;256(3):549–56.PubMedCrossRef
14.
go back to reference Zhu W, Sano H, Nagai R, Fukuhara K, Miyazaki A, Horiuchi S. The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun. 2001;280(4):1183–8.PubMedCrossRef Zhu W, Sano H, Nagai R, Fukuhara K, Miyazaki A, Horiuchi S. The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun. 2001;280(4):1183–8.PubMedCrossRef
15.
go back to reference Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, et al. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J. 2001;15(13):2471–9.PubMedCrossRef Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, et al. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J. 2001;15(13):2471–9.PubMedCrossRef
16.
go back to reference Iacobini C, Menini S, Ricci C, Scipioni A, Sansoni V, Cordone S, et al. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: role of lipoxidation via receptor-mediated mechanisms. Arterioscler Thromb Vasc Biol. 2009;29(6):831–6.PubMedCrossRef Iacobini C, Menini S, Ricci C, Scipioni A, Sansoni V, Cordone S, et al. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: role of lipoxidation via receptor-mediated mechanisms. Arterioscler Thromb Vasc Biol. 2009;29(6):831–6.PubMedCrossRef
17.
go back to reference Mensah-Brown EP, Al Rabesi Z, Shahin A, Al Shamsi M, Arsenijevic N, Hsu DK, et al. Targeted disruption of the galectin-3 gene results in decreased susceptibility to multiple low dose streptozotocin-induced diabetes in mice. Clin Immunol. 2009;130(1):83–8.PubMedCrossRef Mensah-Brown EP, Al Rabesi Z, Shahin A, Al Shamsi M, Arsenijevic N, Hsu DK, et al. Targeted disruption of the galectin-3 gene results in decreased susceptibility to multiple low dose streptozotocin-induced diabetes in mice. Clin Immunol. 2009;130(1):83–8.PubMedCrossRef
18.
go back to reference Nachtigal M, Al-Assaad Z, Mayer EP, Kim K, Monsigny M. Galectin-3 expression in human atherosclerotic lesions. Am J Pathol. 1998;152(5):1199–208.PubMedCentralPubMed Nachtigal M, Al-Assaad Z, Mayer EP, Kim K, Monsigny M. Galectin-3 expression in human atherosclerotic lesions. Am J Pathol. 1998;152(5):1199–208.PubMedCentralPubMed
19.
go back to reference Mzhavia N, Yu S, Ikeda S, Chu TT, Goldberg I, Dansky HM. Neuronatin: a new inflammation gene expressed on the aortic endothelium of diabetic mice. Diabetes. 2008;57(10):2774–83.PubMedCentralPubMedCrossRef Mzhavia N, Yu S, Ikeda S, Chu TT, Goldberg I, Dansky HM. Neuronatin: a new inflammation gene expressed on the aortic endothelium of diabetic mice. Diabetes. 2008;57(10):2774–83.PubMedCentralPubMedCrossRef
20.
go back to reference Mackinnon AC, Liu X, Hadoke PW, Miller MR, Newby DE, Sethi T. Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology. 2013;23(6):654–63.PubMedCentralPubMedCrossRef Mackinnon AC, Liu X, Hadoke PW, Miller MR, Newby DE, Sethi T. Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology. 2013;23(6):654–63.PubMedCentralPubMedCrossRef
21.
go back to reference Colnot C, Fowlis D, Ripoche MA, Bouchaert I, Poirier F. Embryonic implantation in galectin 1/galectin 3 double mutant mice. Dev Dyn. 1998;211(4):306–13.PubMedCrossRef Colnot C, Fowlis D, Ripoche MA, Bouchaert I, Poirier F. Embryonic implantation in galectin 1/galectin 3 double mutant mice. Dev Dyn. 1998;211(4):306–13.PubMedCrossRef
22.
go back to reference Akagiri S, Naito Y, Ichikawa H, Mizushima K, Takagi T, Handa O, et al. A mouse model of metabolic syndrome; increase in visceral adipose tissue precedes the development of fatty liver and insulin resistance in high-fat diet-fed male KK/TA mice. J Clin Biochem Nutr. 2008;42(2):150–7.PubMedCentralPubMedCrossRef Akagiri S, Naito Y, Ichikawa H, Mizushima K, Takagi T, Handa O, et al. A mouse model of metabolic syndrome; increase in visceral adipose tissue precedes the development of fatty liver and insulin resistance in high-fat diet-fed male KK/TA mice. J Clin Biochem Nutr. 2008;42(2):150–7.PubMedCentralPubMedCrossRef
23.
go back to reference Bristow AF, Das RE, Bangham DR. World Health Organization International Standards for highly purified human, porcine and bovine insulins. J Biol Stand. 1988;16(3):165–78.PubMedCrossRef Bristow AF, Das RE, Bangham DR. World Health Organization International Standards for highly purified human, porcine and bovine insulins. J Biol Stand. 1988;16(3):165–78.PubMedCrossRef
24.
go back to reference Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.PubMedCrossRef Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.PubMedCrossRef
25.
26.
27.
go back to reference Khan SS, Solomon MA, McCoy Jr JP. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom. 2005;64(1):1–8.PubMedCrossRef Khan SS, Solomon MA, McCoy Jr JP. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom. 2005;64(1):1–8.PubMedCrossRef
28.
go back to reference Sevilla L, Guma A, Enrique-Tarancon G, Mora S, Munoz P, Palacin M, et al. Chronic high-fat feeding and middle-aging reduce in an additive fashion Glut4 expression in skeletal muscle and adipose tissue. Biochem Biophys Res Commun. 1997;235(1):89–93.PubMedCrossRef Sevilla L, Guma A, Enrique-Tarancon G, Mora S, Munoz P, Palacin M, et al. Chronic high-fat feeding and middle-aging reduce in an additive fashion Glut4 expression in skeletal muscle and adipose tissue. Biochem Biophys Res Commun. 1997;235(1):89–93.PubMedCrossRef
29.
go back to reference Mansor LS, Gonzalez ER, Cole MA, Tyler DJ, Beeson JH, Clarke K, et al. Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin. Cardiovasc Diabetol. 2013;12:136.PubMedCentralPubMedCrossRef Mansor LS, Gonzalez ER, Cole MA, Tyler DJ, Beeson JH, Clarke K, et al. Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin. Cardiovasc Diabetol. 2013;12:136.PubMedCentralPubMedCrossRef
30.
go back to reference Miyoshi T, Nakamura K, Yoshida M, Miura D, Oe H, Akagi S, et al. Effect of vildagliptin, a dipeptidyl peptidase 4 inhibitor, on cardiac hypertrophy induced by chronic beta-adrenergic stimulation in rats. Cardiovasc Diabetol. 2014;13:43.PubMedCentralPubMedCrossRef Miyoshi T, Nakamura K, Yoshida M, Miura D, Oe H, Akagi S, et al. Effect of vildagliptin, a dipeptidyl peptidase 4 inhibitor, on cardiac hypertrophy induced by chronic beta-adrenergic stimulation in rats. Cardiovasc Diabetol. 2014;13:43.PubMedCentralPubMedCrossRef
31.
go back to reference Park JL, Loberg RD, Duquaine D, Zhang H, Deo BK, Ardanaz N, et al. GLUT4 facilitative glucose transporter specifically and differentially contributes to agonist-induced vascular reactivity in mouse aorta. Arterioscler Thromb Vasc Biol. 2005;25(8):1596–602.PubMedCrossRef Park JL, Loberg RD, Duquaine D, Zhang H, Deo BK, Ardanaz N, et al. GLUT4 facilitative glucose transporter specifically and differentially contributes to agonist-induced vascular reactivity in mouse aorta. Arterioscler Thromb Vasc Biol. 2005;25(8):1596–602.PubMedCrossRef
32.
go back to reference Gaudreault N, Scriven DR, Moore ED. Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia. 2004;47(12):2081–92.PubMedCrossRef Gaudreault N, Scriven DR, Moore ED. Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia. 2004;47(12):2081–92.PubMedCrossRef
33.
go back to reference Miura S, Tsunoda N, Ikeda S, Kai Y, Ono M, Maruyama K, et al. Regulatory sequence elements of mouse GLUT4 gene expression in adipose tissues. Biochem Biophys Res Commun. 2003;312(2):277–84.PubMedCrossRef Miura S, Tsunoda N, Ikeda S, Kai Y, Ono M, Maruyama K, et al. Regulatory sequence elements of mouse GLUT4 gene expression in adipose tissues. Biochem Biophys Res Commun. 2003;312(2):277–84.PubMedCrossRef
34.
go back to reference Armoni M, Kritz N, Harel C, Bar-Yoseph F, Chen H, Quon MJ, et al. Peroxisome proliferator-activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem. 2003;278(33):30614–23.PubMedCrossRef Armoni M, Kritz N, Harel C, Bar-Yoseph F, Chen H, Quon MJ, et al. Peroxisome proliferator-activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem. 2003;278(33):30614–23.PubMedCrossRef
35.
go back to reference Holmes B, Dohm GL. Regulation of GLUT4 gene expression during exercise. Med Sci Sports Exerc. 2004;36(7):1202–6.PubMedCrossRef Holmes B, Dohm GL. Regulation of GLUT4 gene expression during exercise. Med Sci Sports Exerc. 2004;36(7):1202–6.PubMedCrossRef
36.
go back to reference Zorzano A, Palacin M, Guma A. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Physiol Scand. 2005;183(1):43–58.PubMedCrossRef Zorzano A, Palacin M, Guma A. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Physiol Scand. 2005;183(1):43–58.PubMedCrossRef
37.
go back to reference Pang J, Rhodes DH, Pini M, Akasheh RT, Castellanos KJ, Cabay RJ, et al. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice. PLoS One. 2013;8(2), e57915.PubMedCentralPubMedCrossRef Pang J, Rhodes DH, Pini M, Akasheh RT, Castellanos KJ, Cabay RJ, et al. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice. PLoS One. 2013;8(2), e57915.PubMedCentralPubMedCrossRef
38.
go back to reference Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Milovanovic MZ, Nikolic IG, et al. Galectin-3 deficiency accelerates high-fat diet-induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes. 2013;62(6):1932–44.PubMedCentralPubMedCrossRef Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Milovanovic MZ, Nikolic IG, et al. Galectin-3 deficiency accelerates high-fat diet-induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes. 2013;62(6):1932–44.PubMedCentralPubMedCrossRef
39.
go back to reference Win MT, Yamamoto Y, Munesue S, Saito H, Han D, Motoyoshi S, et al. Regulation of RAGE for attenuating progression of diabetic vascular complications. Exp Diabetes Res. 2012;2012:894605.PubMedCentralPubMedCrossRef Win MT, Yamamoto Y, Munesue S, Saito H, Han D, Motoyoshi S, et al. Regulation of RAGE for attenuating progression of diabetic vascular complications. Exp Diabetes Res. 2012;2012:894605.PubMedCentralPubMedCrossRef
40.
go back to reference Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, et al. The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One. 2012;7(7), e40584.PubMedCentralPubMedCrossRef Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, et al. The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One. 2012;7(7), e40584.PubMedCentralPubMedCrossRef
41.
go back to reference Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 1999;144(4):789–801.PubMedCentralPubMedCrossRef Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 1999;144(4):789–801.PubMedCentralPubMedCrossRef
42.
go back to reference Chiu DS, Oram JF, LeBoeuf RC, Alpers CE, O’Brien KD. High-density lipoprotein-binding protein (HBP)/vigilin is expressed in human atherosclerotic lesions and colocalizes with apolipoprotein E. Arterioscler Thromb Vasc Biol. 1997;17(11):2350–8.PubMedCrossRef Chiu DS, Oram JF, LeBoeuf RC, Alpers CE, O’Brien KD. High-density lipoprotein-binding protein (HBP)/vigilin is expressed in human atherosclerotic lesions and colocalizes with apolipoprotein E. Arterioscler Thromb Vasc Biol. 1997;17(11):2350–8.PubMedCrossRef
43.
go back to reference Ito S, Naito M, Kobayashi Y, Takatsuka H, Jiang S, Usuda H, et al. Roles of a macrophage receptor with collagenous structure (MARCO) in host defense and heterogeneity of splenic marginal zone macrophages. Arch Histol Cytol. 1999;62(1):83–95.PubMedCrossRef Ito S, Naito M, Kobayashi Y, Takatsuka H, Jiang S, Usuda H, et al. Roles of a macrophage receptor with collagenous structure (MARCO) in host defense and heterogeneity of splenic marginal zone macrophages. Arch Histol Cytol. 1999;62(1):83–95.PubMedCrossRef
44.
go back to reference Saint-Lu N, Oortwijn BD, Pegon JN, Odouard S, Christophe OD, de Groot PG, et al. Identification of galectin-1 and galectin-3 as novel partners for von Willebrand factor. Arterioscler Thromb Vasc Biol. 2012;32(4):894–901.PubMedCrossRef Saint-Lu N, Oortwijn BD, Pegon JN, Odouard S, Christophe OD, de Groot PG, et al. Identification of galectin-1 and galectin-3 as novel partners for von Willebrand factor. Arterioscler Thromb Vasc Biol. 2012;32(4):894–901.PubMedCrossRef
Metadata
Title
Galectin-3 deficiency exacerbates hyperglycemia and the endothelial response to diabetes
Authors
April L. Darrow
Ralph V. Shohet
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2015
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-015-0230-3

Other articles of this Issue 1/2015

Cardiovascular Diabetology 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine