Skip to main content
Top
Published in: Respiratory Research 1/2015

Open Access 01-12-2015 | Research

Increased in vivo mitochondrial oxygenation with right ventricular failure induced by pulmonary arterial hypertension: mitochondrial inhibition as driver of cardiac failure?

Authors: Gianmarco M Balestra, Egbert G Mik, Otto Eerbeek, Patricia AC Specht, Willem J van der Laarse, Coert J Zuurbier

Published in: Respiratory Research | Issue 1/2015

Login to get access

Abstract

Background

The leading cause of mortality due to pulmonary arterial hypertension (PAH) is failure of the cardiac right ventricle. It has long been hypothesized that during the development of chronic cardiac failure the heart becomes energy deprived, possibly due to shortage of oxygen at the level of cardiomyocyte mitochondria. However, direct evaluation of oxygen tension levels within the in vivo right ventricle during PAH is currently lacking. Here we directly evaluated this hypothesis by using a recently reported technique of oxygen-dependent quenching of delayed fluorescence of mitochondrial protoprophyrin IX, to determine the distribution of mitochondrial oxygen tension (mitoPO2) within the right ventricle (RV) subjected to progressive PAH.

Methods

PAH was induced through a single injection of monocrotaline (MCT). Control (saline-injected), compensated RV hypertrophy (30 mg/kg MCT; MCT30), and RV failure (60 mg/kg MCT; MCT60) rats were compared 4 wk after treatment. The distribution of mitoPO2 within the RV was determined in mechanically-ventilated, anaesthetized animals, applying different inspired oxygen (FiO2) levels and two increment dosages of dobutamine.

Results

MCT60 resulted in RV failure (increased mortality, weight loss, increased lung weight), MCT30 resulted in compensated RV hypertrophy. At 30% or 40% FiO2, necessary to obtain physiological arterial PO2 in the diseased animals, RV failure rats had significantly less mitochondria (15% of total mitochondria) in the 0-20 mmHg mitoPO2 range than hypertrophied RV rats (48%) or control rats (54%). Only when oxygen supply was reduced to 21% FiO2, resulting in low arterial PO2 for the MCT60 animals, or when oxygen demand increased with high dose dobutamine, the number of failing RV mitochondria with low oxygen became similar to control RV. In addition, metabolic enzyme analysis revealed similar mitochondrial mass, increased glycolytic hexokinase activity following MCT, with increased lactate dehydrogenase activity only in compensated hypertrophied RV.

Conclusions

Our novel observation of increased mitochondrial oxygenation suggests down-regulation of in vivo mitochondrial oxygen consumption, in the absence of hypoxia, with transition towards right ventricular failure induced by pulmonary arterial hypertension.
Literature
1.
go back to reference Vonk-Noordergraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62:D22–33.CrossRef Vonk-Noordergraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62:D22–33.CrossRef
2.
go back to reference Katz AM. Cardiomyopathy of overload: a major determinant of prognosis in congestive heart failure. N Engl J Med. 1989;322:100–10. Katz AM. Cardiomyopathy of overload: a major determinant of prognosis in congestive heart failure. N Engl J Med. 1989;322:100–10.
3.
go back to reference Murakami Y, Zhang Y, Cho YK, Mansoor AM, Chung JK, Chu C, et al. Myocardial oxygenation during high work states in hearts with postinfarction remodelling. Circulation. 1999;99:942–94.CrossRefPubMed Murakami Y, Zhang Y, Cho YK, Mansoor AM, Chung JK, Chu C, et al. Myocardial oxygenation during high work states in hearts with postinfarction remodelling. Circulation. 1999;99:942–94.CrossRefPubMed
4.
go back to reference Van Bilsen M, Smeets PJH, Gilde AJ, Van der Vusse GJ. Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res. 2004;2004(61):218–26.CrossRef Van Bilsen M, Smeets PJH, Gilde AJ, Van der Vusse GJ. Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res. 2004;2004(61):218–26.CrossRef
6.
go back to reference Bache RJ, Zhang J, Murakami Y, Zhang Y, Cho YK, Merkle H, et al. Myocardial oxygenation at high workloads in hearts with left ventricular hypertrophy. Cardiov Res. 1999;42:616–27.CrossRef Bache RJ, Zhang J, Murakami Y, Zhang Y, Cho YK, Merkle H, et al. Myocardial oxygenation at high workloads in hearts with left ventricular hypertrophy. Cardiov Res. 1999;42:616–27.CrossRef
7.
go back to reference Traverse JH, Melchert P, Pierpont GL, Jones B, Crampton M, Bache RJ. Regulation of myocardial blood flow by oxygen consumption is maintained in the failing heart during exercise. Circ Res. 1999;84:401–8.CrossRefPubMed Traverse JH, Melchert P, Pierpont GL, Jones B, Crampton M, Bache RJ. Regulation of myocardial blood flow by oxygen consumption is maintained in the failing heart during exercise. Circ Res. 1999;84:401–8.CrossRefPubMed
8.
go back to reference Mik EG, Ince C, Eerbeek O, Heinen A, Stap J, Hooibrink B, et al. Mitochondrial oxygen tension within the heart. J Mol Cell Cardiol. 2009;46:943–51.CrossRefPubMed Mik EG, Ince C, Eerbeek O, Heinen A, Stap J, Hooibrink B, et al. Mitochondrial oxygen tension within the heart. J Mol Cell Cardiol. 2009;46:943–51.CrossRefPubMed
9.
go back to reference Hoffman DL, Salter JD, Brookes PS. Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signalling. Am J Physiol Heart Circ Physiol. 2007;292:H101–8.CrossRefPubMed Hoffman DL, Salter JD, Brookes PS. Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signalling. Am J Physiol Heart Circ Physiol. 2007;292:H101–8.CrossRefPubMed
10.
go back to reference Wilson DF. Regulation of cellular metabolism: programming and maintaining metabolic homeostasis. J Appl Physiol. 2013;115:1583–8.CrossRefPubMed Wilson DF. Regulation of cellular metabolism: programming and maintaining metabolic homeostasis. J Appl Physiol. 2013;115:1583–8.CrossRefPubMed
11.
go back to reference Sutendra G, Dromparis P, Paulin R, Zervopoulos S, Haromy A, Nagendran J, et al. A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med. 2013;91:1315–27.CrossRefPubMed Sutendra G, Dromparis P, Paulin R, Zervopoulos S, Haromy A, Nagendran J, et al. A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med. 2013;91:1315–27.CrossRefPubMed
12.
go back to reference Brookes PS, Zhang J, Dai L, Parks DA, Darley-Usmar VM, Anderson PG. Increased sensitivity of mitochondrial respiration to inhibition by nitric oxide in cardiac hypertrophy. J Mol Cell Cardiol. 2001;33:69–82.CrossRefPubMed Brookes PS, Zhang J, Dai L, Parks DA, Darley-Usmar VM, Anderson PG. Increased sensitivity of mitochondrial respiration to inhibition by nitric oxide in cardiac hypertrophy. J Mol Cell Cardiol. 2001;33:69–82.CrossRefPubMed
13.
go back to reference Harms FA, Voorbeijtel WJ, Bodmer SI, Raat NJ, Mik EG. Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo. Mitochondrion. 2013;13:507–14.CrossRefPubMed Harms FA, Voorbeijtel WJ, Bodmer SI, Raat NJ, Mik EG. Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo. Mitochondrion. 2013;13:507–14.CrossRefPubMed
14.
go back to reference Mik EG, Johannes T, Zuurbier CJ, Heinen A, Houben-Weerts JH, Balestra GM, et al. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J. 2008;95:3977–90.CrossRefPubMedPubMedCentral Mik EG, Johannes T, Zuurbier CJ, Heinen A, Houben-Weerts JH, Balestra GM, et al. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J. 2008;95:3977–90.CrossRefPubMedPubMedCentral
15.
go back to reference Mik EG, Stap J, Sinaasappel M, Beek JF, Aten JA, van Leeuwen TG, et al. Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporhyrin IX. Nat Methods. 2006;3:939–45.CrossRefPubMed Mik EG, Stap J, Sinaasappel M, Beek JF, Aten JA, van Leeuwen TG, et al. Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporhyrin IX. Nat Methods. 2006;3:939–45.CrossRefPubMed
16.
go back to reference Des Tombe AL, Van Beek-Harmsen BJ, Lee-De Groot MB, Van der Laarse WJ. Calibrated histochemistry applied to oxygen supply and demand in hypertrophied rat myocardium. Microsc Res Tech. 2002;58:412–20.CrossRefPubMed Des Tombe AL, Van Beek-Harmsen BJ, Lee-De Groot MB, Van der Laarse WJ. Calibrated histochemistry applied to oxygen supply and demand in hypertrophied rat myocardium. Microsc Res Tech. 2002;58:412–20.CrossRefPubMed
17.
go back to reference Gürel E, Smeele KM, Eerbeek O, Koeman A, Demirci C, Hollmann MW, et al. Ischemic preconditioning affects hexokinase activity and HKII in different subcellular compartments throughout cardiac ischemia-reperfusion. J Appl Physiol. 2009;106:1909–16.CrossRefPubMed Gürel E, Smeele KM, Eerbeek O, Koeman A, Demirci C, Hollmann MW, et al. Ischemic preconditioning affects hexokinase activity and HKII in different subcellular compartments throughout cardiac ischemia-reperfusion. J Appl Physiol. 2009;106:1909–16.CrossRefPubMed
18.
go back to reference Zuurbier CJ, Eerbeek O, Meijer AJ. Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution. Am J Physiol Heart Circ Physiol. 2005;289:H496–9.CrossRefPubMed Zuurbier CJ, Eerbeek O, Meijer AJ. Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution. Am J Physiol Heart Circ Physiol. 2005;289:H496–9.CrossRefPubMed
19.
go back to reference Daicho T, Yagi T, Abe Y, Ohara M, Marunouchi T, Takeo S, et al. Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci. 2009;111:33–43.CrossRefPubMed Daicho T, Yagi T, Abe Y, Ohara M, Marunouchi T, Takeo S, et al. Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci. 2009;111:33–43.CrossRefPubMed
20.
go back to reference Piao L, Fang YH, Cadete VJJ, Wietholt C, Urboniene D, Toth PT, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitation the hibernating right ventricle. J Mol Cell Cardiol. 2010;88:47–60. Piao L, Fang YH, Cadete VJJ, Wietholt C, Urboniene D, Toth PT, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitation the hibernating right ventricle. J Mol Cell Cardiol. 2010;88:47–60.
21.
22.
go back to reference Lamberts RR, Caldenhoven E, Lansink M, Witte G, Vaessen RJ, St Cyr JA, et al. Preservation of diastolic function in monocrotaline-induced right ventricular hypertrophy in rats. Am J Physiol Heart Circ Physiol. 2007;293:H1869–976.CrossRefPubMed Lamberts RR, Caldenhoven E, Lansink M, Witte G, Vaessen RJ, St Cyr JA, et al. Preservation of diastolic function in monocrotaline-induced right ventricular hypertrophy in rats. Am J Physiol Heart Circ Physiol. 2007;293:H1869–976.CrossRefPubMed
23.
go back to reference Traverse JH, Chen Y, Hou M, Li Y, Bache RJ. Effects of K + ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure. Circ Res. 2007;100:1643–9.CrossRefPubMed Traverse JH, Chen Y, Hou M, Li Y, Bache RJ. Effects of K + ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure. Circ Res. 2007;100:1643–9.CrossRefPubMed
24.
go back to reference Van der Laarse WJ, Des Tombe AL, van Beek-Harmsen BJ, Lee-de Groot MB, Jaspers RT. Krogh’s diffusion coefficient for oxygen in isolated Xenopus skeletal muscle fibers and rat myocardial trabeculae at maximum rates of oxygen consumption. J Appl Physiol. 2005;99:2173–80.CrossRefPubMed Van der Laarse WJ, Des Tombe AL, van Beek-Harmsen BJ, Lee-de Groot MB, Jaspers RT. Krogh’s diffusion coefficient for oxygen in isolated Xenopus skeletal muscle fibers and rat myocardial trabeculae at maximum rates of oxygen consumption. J Appl Physiol. 2005;99:2173–80.CrossRefPubMed
25.
go back to reference Do E, Baudet S, Verdys M, Touzeau C, Bailly F, Lucas-heron B, et al. Energy metabolism in normal and hypertrophied right ventricle of the ferret heart. J Mol Cell Cardiol. 1997;29:1903–13.CrossRefPubMed Do E, Baudet S, Verdys M, Touzeau C, Bailly F, Lucas-heron B, et al. Energy metabolism in normal and hypertrophied right ventricle of the ferret heart. J Mol Cell Cardiol. 1997;29:1903–13.CrossRefPubMed
26.
go back to reference Fang YH, Piao L, Hong Z, Toth PT, Marsboom G, Bache-Wig P, et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploring Randle’s cycle. J Mol Med. 2012;90:31–43.CrossRefPubMed Fang YH, Piao L, Hong Z, Toth PT, Marsboom G, Bache-Wig P, et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploring Randle’s cycle. J Mol Med. 2012;90:31–43.CrossRefPubMed
27.
go back to reference Zhang WH, Qiu MH, Wang XJ, Sun K, Zheng Y, Jing ZC. Up-regulation of hexokinase 1 in the right ventricle of monocortaline induced pulmonary hypertension. Respir Res. 2014;15:119.CrossRefPubMedPubMedCentral Zhang WH, Qiu MH, Wang XJ, Sun K, Zheng Y, Jing ZC. Up-regulation of hexokinase 1 in the right ventricle of monocortaline induced pulmonary hypertension. Respir Res. 2014;15:119.CrossRefPubMedPubMedCentral
28.
go back to reference Drake JI, Bogaard HJ, Mizuno S, Clifton B, Xie B, Gao Y, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45:1239–47.CrossRefPubMedPubMedCentral Drake JI, Bogaard HJ, Mizuno S, Clifton B, Xie B, Gao Y, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45:1239–47.CrossRefPubMedPubMedCentral
29.
go back to reference Nederlof R, Eerbeek O, Hollmann MW, Southworth R, Zuurbier CJ. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischemia-reperfusion injury in heart. Brit J Pharmacol. 2014;171:2067–79.CrossRef Nederlof R, Eerbeek O, Hollmann MW, Southworth R, Zuurbier CJ. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischemia-reperfusion injury in heart. Brit J Pharmacol. 2014;171:2067–79.CrossRef
30.
go back to reference Nederlof R, Chaoqin X, Gurel E, Koeman A, Hollmann MW, Southworth R, et al. Hexokinase II binding to mitochondria suppress irreversible ischemia reperfusion injury in the beating heart by respiratory inhibition and reduced ROS levels. Circ Res. 2012;111(Suppl):217. Nederlof R, Chaoqin X, Gurel E, Koeman A, Hollmann MW, Southworth R, et al. Hexokinase II binding to mitochondria suppress irreversible ischemia reperfusion injury in the beating heart by respiratory inhibition and reduced ROS levels. Circ Res. 2012;111(Suppl):217.
31.
go back to reference Ong SG, Hee Lee W, Theodorou L, Kodo K, Lim SY, Shukla DH, et al. HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc Res. 2014;104:24–36.CrossRefPubMed Ong SG, Hee Lee W, Theodorou L, Kodo K, Lim SY, Shukla DH, et al. HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc Res. 2014;104:24–36.CrossRefPubMed
33.
go back to reference Chatham JC, Gao ZP, Forder JR. Impact of 1 wk of diabetes on the regulation of myocardial carbohydrate and fatty acid oxidation. Am J Physiol Endocrinol Metab. 1999;277:E342–51. Chatham JC, Gao ZP, Forder JR. Impact of 1 wk of diabetes on the regulation of myocardial carbohydrate and fatty acid oxidation. Am J Physiol Endocrinol Metab. 1999;277:E342–51.
34.
go back to reference Traverse JH, Chen Y, Hou M, Bache RJ. Inhibition of NO production increases myocardial blood flow and oxygen consumtion in congestive heart failure. Am J Physiol Heart Circ Physiol. 2002;282:H2278–83.CrossRefPubMed Traverse JH, Chen Y, Hou M, Bache RJ. Inhibition of NO production increases myocardial blood flow and oxygen consumtion in congestive heart failure. Am J Physiol Heart Circ Physiol. 2002;282:H2278–83.CrossRefPubMed
35.
go back to reference Nunn JF. Factors influencing the arterial oxygen tension during halothane anaesthesia with spontaneous respiration. Brit J Anaesth. 1964;36:327–41.CrossRefPubMed Nunn JF. Factors influencing the arterial oxygen tension during halothane anaesthesia with spontaneous respiration. Brit J Anaesth. 1964;36:327–41.CrossRefPubMed
36.
go back to reference Nunn JF, Bergman NA, Coleman AJ. Factors influencing the arterial oxygen tension during anaesthesia with artificial ventilation. Brit J Anaesth. 1965;37:898–914.CrossRefPubMed Nunn JF, Bergman NA, Coleman AJ. Factors influencing the arterial oxygen tension during anaesthesia with artificial ventilation. Brit J Anaesth. 1965;37:898–914.CrossRefPubMed
37.
go back to reference Handoko ML, de Man FS, Happe CM, Schalij I, Musters RJP, Westerhof N, et al. Opposite effects of training rats with stable nd progressive pulmonary hypertension. Circulation. 2009;12:42–9.CrossRef Handoko ML, de Man FS, Happe CM, Schalij I, Musters RJP, Westerhof N, et al. Opposite effects of training rats with stable nd progressive pulmonary hypertension. Circulation. 2009;12:42–9.CrossRef
38.
go back to reference Korstjens IJM, Rouws CHFC, van der Laarse WJ, van der Zee L, Stienen GJM. Myocardial force development and structural changes associated with monocrotaline induced cardiac hypertrophy and heart failure. J Muscl Res Cell Motil. 2002;23:93–102.CrossRef Korstjens IJM, Rouws CHFC, van der Laarse WJ, van der Zee L, Stienen GJM. Myocardial force development and structural changes associated with monocrotaline induced cardiac hypertrophy and heart failure. J Muscl Res Cell Motil. 2002;23:93–102.CrossRef
Metadata
Title
Increased in vivo mitochondrial oxygenation with right ventricular failure induced by pulmonary arterial hypertension: mitochondrial inhibition as driver of cardiac failure?
Authors
Gianmarco M Balestra
Egbert G Mik
Otto Eerbeek
Patricia AC Specht
Willem J van der Laarse
Coert J Zuurbier
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2015
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-015-0178-6

Other articles of this Issue 1/2015

Respiratory Research 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine