Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Public Health | Research article

Characterization of data-driven clusters in diabetes-free adults and their utility for risk stratification of type 2 diabetes

Authors: Diego Yacamán Méndez, Minhao Zhou, Ylva Trolle Lagerros, Donaji V. Gómez Velasco, Per Tynelius, Hrafnhildur Gudjonsdottir, Antonio Ponce de Leon, Katarina Eeg-Olofsson, Claes-Göran Östenson, Boel Brynedal, Carlos A. Aguilar Salinas, David Ebbevi, Anton Lager

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

The prevention of type 2 diabetes is challenging due to the variable effects of risk factors at an individual level. Data-driven methods could be useful to detect more homogeneous groups based on risk factor variability. The aim of this study was to derive characteristic phenotypes using cluster analysis of common risk factors and to assess their utility to stratify the risk of type 2 diabetes.

Methods

Data on 7317 diabetes-free adults from Sweden were used in the main analysis and on 2332 diabetes-free adults from Mexico for external validation. Clusters were based on sex, family history of diabetes, educational attainment, fasting blood glucose and insulin levels, estimated insulin resistance and β-cell function, systolic and diastolic blood pressure, and BMI. The risk of type 2 diabetes was assessed using Cox proportional hazards models. The predictive accuracy and long-term stability of the clusters were then compared to different definitions of prediabetes.

Results

Six risk phenotypes were identified independently in both cohorts: very low-risk (VLR), low-risk low β-cell function (LRLB), low-risk high β-cell function (LRHB), high-risk high blood pressure (HRHBP), high-risk β-cell failure (HRBF), and high-risk insulin-resistant (HRIR). Compared to the LRHB cluster, the VLR and LRLB clusters showed a lower risk, while the HRHBP, HRBF, and HRIR clusters showed a higher risk of developing type 2 diabetes. The high-risk clusters, as a group, had a better predictive accuracy than prediabetes and adequate stability after 20 years.

Conclusions

Phenotypes derived using cluster analysis were useful in stratifying the risk of type 2 diabetes among diabetes-free adults in two independent cohorts. These results could be used to develop more precise public health interventions.
Appendix
Available only for authorised users
Literature
1.
go back to reference James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858.CrossRef James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858.CrossRef
2.
go back to reference Beagley J, Guariguata L, Weil C, Motala AA. Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract. 2014;103(2):150–60.CrossRef Beagley J, Guariguata L, Weil C, Motala AA. Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract. 2014;103(2):150–60.CrossRef
3.
go back to reference Magliano DJ, Islam RM, Barr ELM, Gregg EW, Pavkov ME, Harding JL, et al. Trends in incidence of total or type 2 diabetes: systematic review. BMJ. 2019;366:l5003.CrossRef Magliano DJ, Islam RM, Barr ELM, Gregg EW, Pavkov ME, Harding JL, et al. Trends in incidence of total or type 2 diabetes: systematic review. BMJ. 2019;366:l5003.CrossRef
4.
go back to reference Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care. 2011;34(6):1424.CrossRef Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care. 2011;34(6):1424.CrossRef
5.
go back to reference Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379(9833):2279–90.CrossRef Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379(9833):2279–90.CrossRef
6.
go back to reference Richter B, Hemmingsen B, Metzendorf MI, Takwoingi Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst Rev. 2018;10:CD012661.PubMed Richter B, Hemmingsen B, Metzendorf MI, Takwoingi Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst Rev. 2018;10:CD012661.PubMed
7.
go back to reference Kivimäki M, Tabák AG. Does addressing prediabetes help to improve population health? Lancet Diabetes Endocrinol. 2018;6(5):354–6.CrossRef Kivimäki M, Tabák AG. Does addressing prediabetes help to improve population health? Lancet Diabetes Endocrinol. 2018;6(5):354–6.CrossRef
8.
go back to reference World Health Organization: Classification of diabetes mellitus. 2019. World Health Organization: Classification of diabetes mellitus. 2019.
9.
go back to reference Fitipaldi H, McCarthy MI, Florez JC, Franks PW. A global overview of precision medicine in type 2 diabetes. Diabetes. 2018;67(10):1911–22.CrossRef Fitipaldi H, McCarthy MI, Florez JC, Franks PW. A global overview of precision medicine in type 2 diabetes. Diabetes. 2018;67(10):1911–22.CrossRef
10.
go back to reference Prasad RB, Groop L. Precision medicine in type 2 diabetes. J Intern Med. 2019;285(1):40–8.CrossRef Prasad RB, Groop L. Precision medicine in type 2 diabetes. J Intern Med. 2019;285(1):40–8.CrossRef
11.
go back to reference Khoury MJ, Iademarco MF, Riley WT. Precision public health for the era of precision medicine. Am J Prev Med. 2016;50(3):398–401.CrossRef Khoury MJ, Iademarco MF, Riley WT. Precision public health for the era of precision medicine. Am J Prev Med. 2016;50(3):398–401.CrossRef
12.
go back to reference Bonnefond A, Froguel P. Clustering for a better prediction of type 2 diabetes mellitus. Nat Rev Endocrinol. 2021;17(4):193–4.CrossRef Bonnefond A, Froguel P. Clustering for a better prediction of type 2 diabetes mellitus. Nat Rev Endocrinol. 2021;17(4):193–4.CrossRef
13.
go back to reference Li L, Cheng W-Y, Glicksberg BS, Gottesman O, Tamler R, Chen R, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med. 2015;7(311):311ra174.CrossRef Li L, Cheng W-Y, Glicksberg BS, Gottesman O, Tamler R, Chen R, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med. 2015;7(311):311ra174.CrossRef
14.
go back to reference Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9.CrossRef Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9.CrossRef
15.
go back to reference Safai N, Ali A, Rossing P, Ridderstrale M. Stratification of type 2 diabetes based on routine clinical markers. Diabetes Res Clin Pract. 2018;141:275–83.CrossRef Safai N, Ali A, Rossing P, Ridderstrale M. Stratification of type 2 diabetes based on routine clinical markers. Diabetes Res Clin Pract. 2018;141:275–83.CrossRef
16.
go back to reference Harding A-H, Griffin SJ, Wareham NJ. Population impact of strategies for identifying groups at high risk of type 2 diabetes. Prev Med. 2006;42(5):364–8.CrossRef Harding A-H, Griffin SJ, Wareham NJ. Population impact of strategies for identifying groups at high risk of type 2 diabetes. Prev Med. 2006;42(5):364–8.CrossRef
17.
go back to reference Cho SB, Kim SC, Chung MG. Identification of novel population clusters with different susceptibilities to type 2 diabetes and their impact on the prediction of diabetes. Sci Rep. 2019;9(1):3329.CrossRef Cho SB, Kim SC, Chung MG. Identification of novel population clusters with different susceptibilities to type 2 diabetes and their impact on the prediction of diabetes. Sci Rep. 2019;9(1):3329.CrossRef
18.
go back to reference Gudjonsdottir H, Tynelius P, Fors S, Yacamán Méndez D, Gebreslassie M, Zhou M, et al. Cohort profile: the Stockholm Diabetes Prevention Programme (SDPP). Int J Epidemiol. 2022. Gudjonsdottir H, Tynelius P, Fors S, Yacamán Méndez D, Gebreslassie M, Zhou M, et al. Cohort profile: the Stockholm Diabetes Prevention Programme (SDPP). Int J Epidemiol. 2022.
19.
go back to reference Arellano-Campos O, Gómez-Velasco DV, Bello-Chavolla OY, Cruz-Bautista I, Melgarejo-Hernandez MA, Muñoz-Hernandez L, et al. Development and validation of a predictive model for incident type 2 diabetes in middle-aged Mexican adults: the metabolic syndrome cohort. BMC Endocr Disord. 2019;19(1):41.CrossRef Arellano-Campos O, Gómez-Velasco DV, Bello-Chavolla OY, Cruz-Bautista I, Melgarejo-Hernandez MA, Muñoz-Hernandez L, et al. Development and validation of a predictive model for incident type 2 diabetes in middle-aged Mexican adults: the metabolic syndrome cohort. BMC Endocr Disord. 2019;19(1):41.CrossRef
20.
go back to reference American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes 2020. Diabetes Care. 2020;43(Supplement 1):S14–31.CrossRef American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes 2020. Diabetes Care. 2020;43(Supplement 1):S14–31.CrossRef
21.
go back to reference Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95.CrossRef Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95.CrossRef
22.
go back to reference Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disc. 1998;2(3):283–304.CrossRef Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disc. 1998;2(3):283–304.CrossRef
23.
go back to reference Ullmann T, Hennig C, Boulesteix A-L. Validation of cluster analysis results on validation data: a systematic framework. WIREs Data Mining and Knowledge Discovery. 2022;12(3):e1444.CrossRef Ullmann T, Hennig C, Boulesteix A-L. Validation of cluster analysis results on validation data: a systematic framework. WIREs Data Mining and Knowledge Discovery. 2022;12(3):e1444.CrossRef
24.
go back to reference Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Series B (Statistical Methodology). 2001;63(2):411–23.CrossRef Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Series B (Statistical Methodology). 2001;63(2):411–23.CrossRef
25.
go back to reference Hennig C. Cluster-wise assessment of cluster stability. Computational Stat Data Anal. 2007;52(1):258–71.CrossRef Hennig C. Cluster-wise assessment of cluster stability. Computational Stat Data Anal. 2007;52(1):258–71.CrossRef
26.
go back to reference Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol. 1997;145(1):72–80.CrossRef Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol. 1997;145(1):72–80.CrossRef
27.
28.
go back to reference Statacorp: Stata Statistical Software: release 15. In. College Station, TX: StataCorp LLC; 2017. Statacorp: Stata Statistical Software: release 15. In. College Station, TX: StataCorp LLC; 2017.
30.
go back to reference McInnes L, Healy J, Saul N, Grossberger L. UMAP: uniform manifold approximation and projection. J Open Source Software. 3(29):861. McInnes L, Healy J, Saul N, Grossberger L. UMAP: uniform manifold approximation and projection. J Open Source Software. 3(29):861.
31.
go back to reference Kahkoska AR, Geybels MS, Klein KR, Kreiner FF, Marx N, Nauck MA, et al. Validation of distinct type 2 diabetes clusters and their association with diabetes complications in the DEVOTE, LEADER and SUSTAIN-6 cardiovascular outcomes trials. Diabetes Obes Metab. 2020;22(9):1537–47.CrossRef Kahkoska AR, Geybels MS, Klein KR, Kreiner FF, Marx N, Nauck MA, et al. Validation of distinct type 2 diabetes clusters and their association with diabetes complications in the DEVOTE, LEADER and SUSTAIN-6 cardiovascular outcomes trials. Diabetes Obes Metab. 2020;22(9):1537–47.CrossRef
32.
go back to reference Bello-Chavolla OY, Bahena-López JP, Vargas-Vázquez A, Antonio-Villa NE, Márquez-Salinas A, Fermín-Martínez CA, et al. Clinical characterization of data-driven diabetes subgroups in Mexicans using a reproducible machine learning approach. BMJ Open Diabetes Res Care. 2020;8(1):e001550.CrossRef Bello-Chavolla OY, Bahena-López JP, Vargas-Vázquez A, Antonio-Villa NE, Márquez-Salinas A, Fermín-Martínez CA, et al. Clinical characterization of data-driven diabetes subgroups in Mexicans using a reproducible machine learning approach. BMJ Open Diabetes Res Care. 2020;8(1):e001550.CrossRef
33.
go back to reference Dennis JM, Shields BM, Henley WE, Jones AG, Hattersley AT. Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol. 2019;7(6):442–51.CrossRef Dennis JM, Shields BM, Henley WE, Jones AG, Hattersley AT. Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol. 2019;7(6):442–51.CrossRef
34.
go back to reference Lugner M, Gudbjörnsdottir S, Sattar N, Svensson AM, Miftaraj M, Eeg-Olofsson K, et al. Comparison between data-driven clusters and models based on clinical features to predict outcomes in type 2 diabetes: nationwide observational study. Diabetologia. 2021;64(9):1973–81.CrossRef Lugner M, Gudbjörnsdottir S, Sattar N, Svensson AM, Miftaraj M, Eeg-Olofsson K, et al. Comparison between data-driven clusters and models based on clinical features to predict outcomes in type 2 diabetes: nationwide observational study. Diabetologia. 2021;64(9):1973–81.CrossRef
35.
go back to reference Wagner R, Heni M, Tabák AG, Machann J, Schick F, Randrianarisoa E, et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021. Wagner R, Heni M, Tabák AG, Machann J, Schick F, Randrianarisoa E, et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021.
36.
go back to reference Zaharia OP, Strassburger K, Strom A, Bönhof GJ, Karusheva Y, Antoniou S, et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 2019;7(9):684–94.CrossRef Zaharia OP, Strassburger K, Strom A, Bönhof GJ, Karusheva Y, Antoniou S, et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 2019;7(9):684–94.CrossRef
37.
go back to reference Shields BM, Peters JL, Cooper C, Lowe J, Knight BA, Powell RJ, et al. Can clinical features be used to differentiate type 1 from type 2 diabetes? A systematic review of the literature. BMJ Open. 2015;5(11):e009088.CrossRef Shields BM, Peters JL, Cooper C, Lowe J, Knight BA, Powell RJ, et al. Can clinical features be used to differentiate type 1 from type 2 diabetes? A systematic review of the literature. BMJ Open. 2015;5(11):e009088.CrossRef
38.
go back to reference World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjectsWorld Medical Association Declaration of HelsinkiSpecial Communication. JAMA. 2013;310(20):2191–4.CrossRef World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjectsWorld Medical Association Declaration of HelsinkiSpecial Communication. JAMA. 2013;310(20):2191–4.CrossRef
Metadata
Title
Characterization of data-driven clusters in diabetes-free adults and their utility for risk stratification of type 2 diabetes
Authors
Diego Yacamán Méndez
Minhao Zhou
Ylva Trolle Lagerros
Donaji V. Gómez Velasco
Per Tynelius
Hrafnhildur Gudjonsdottir
Antonio Ponce de Leon
Katarina Eeg-Olofsson
Claes-Göran Östenson
Boel Brynedal
Carlos A. Aguilar Salinas
David Ebbevi
Anton Lager
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02551-6

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue