Skip to main content
Top
Published in: BMC Health Services Research 1/2022

Open Access 01-12-2022 | COVID-19 | Research

Exploring health service preparation for the COVID-19 crisis utilizing simulation-based activities in a Norwegian hospital: a qualitative case study

Authors: Une Elisabeth Stømer, Peter Dieckmann, Thomas Laudal, Kristi Bjørnes Skeie, Sigrun Anna Qvindesland, Hege Langli Ersdal

Published in: BMC Health Services Research | Issue 1/2022

Login to get access

Abstract

Introduction

The first wave of the COVID-19 pandemic caused stress in healthcare organizations worldwide. Hospitals and healthcare institutions had to reorganize their services to meet the demands of the crisis. In this case study, we focus on the role of simulation as part of the pandemic preparations in a large hospital in Norway. The aim of this study is to explore hospital leaders' and simulation facilitators' expectations of, and experiences of utilizing simulation-based activities in the preparations for the COVID-19 pandemic.

Methods

This is a qualitative case study utilizing semi-structured in-depth interviews with hospital leaders and simulation facilitators in one large hospital in Norway. The data were sorted under three predefined research topics and further analyzed by inductive, thematic analysis according to Braun and Clarke within these pre-defined topics.

Results

Eleven members of the hospital leadership and simulation facilitators were included in the study. We identified four themes explaining why COVID-19 related simulation-based activities were initiated, and perceived consequences of the activities; 1) a multifaceted method like simulation fitted a multifaceted crisis, 2) a well-established culture for simulation in the hospital was crucial for scaling up simulation-based activities during the crisis, 3) potential risks were outweighed by the advantages of utilizing simulation-based activities, and finally 4) hospital leaders and simulation facilitators retrospectively assessed the use of simulation-based activities as appropriate to prepare for a pandemic crisis.

Conclusions

The hospital leadership’s decision to utilize simulation-based activities in preparing for the COVID-19 crisis may be explained by many factors. First, it seems that many years of experience with systematic use of simulation-based activities within the hospital can explain the trust in simulation as a valuable tool that were easy to reach. Second, both hospital leaders and simulation facilitators saw simulation as a unique tool for the optimization of the COVID-19 response due to the wide applicability of the method. According to hospital leaders and simulation facilitators, simulation-based activities revealed critical gaps in training and competence levels, treatment protocols, patient logistics, and environmental shortcomings that were acted upon, suggesting that institutional learning took place.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sharara-Chami R, Sabouneh R, Zeineddine R, Banat R, Fayad J, Lakissian Z. In situ simulation: an essential tool for safe preparedness for the COVID-19 pandemic. Simul Healthc. 2020;15(5):303–9.CrossRef Sharara-Chami R, Sabouneh R, Zeineddine R, Banat R, Fayad J, Lakissian Z. In situ simulation: an essential tool for safe preparedness for the COVID-19 pandemic. Simul Healthc. 2020;15(5):303–9.CrossRef
4.
go back to reference Theilen U, Fraser L, Jones P, Leonard P, Simpson D. Regular in-situ simulation training of paediatric medical emergency team leads to sustained improvements in hospital response to deteriorating patients, improved outcomes in intensive care and financial savings. Resuscitation. 2017;115:61–7.CrossRef Theilen U, Fraser L, Jones P, Leonard P, Simpson D. Regular in-situ simulation training of paediatric medical emergency team leads to sustained improvements in hospital response to deteriorating patients, improved outcomes in intensive care and financial savings. Resuscitation. 2017;115:61–7.CrossRef
5.
go back to reference Capella J, Smith S, Philp A, Putnam T, Gilbert C, Fry W, et al. Teamwork training improves the clinical care of trauma patients. J Surg Educ. 2010;67(6):439–43.CrossRef Capella J, Smith S, Philp A, Putnam T, Gilbert C, Fry W, et al. Teamwork training improves the clinical care of trauma patients. J Surg Educ. 2010;67(6):439–43.CrossRef
6.
go back to reference Murphy M, McCloughen A, Curtis K. The impact of simulated multidisciplinary trauma team training on team performance: a qualitative study. Australas Emerg Care. 2019;22(1):1–7.CrossRef Murphy M, McCloughen A, Curtis K. The impact of simulated multidisciplinary trauma team training on team performance: a qualitative study. Australas Emerg Care. 2019;22(1):1–7.CrossRef
7.
go back to reference Wisborg T, Brattebø G, Brinchmann-Hansen Å, Uggen PE, Hansen KS. Effects of nationwide training of multiprofessional trauma teams in norwegian hospitals. J Trauma Acute Care Surg. 2008;64(6):1613–8.CrossRef Wisborg T, Brattebø G, Brinchmann-Hansen Å, Uggen PE, Hansen KS. Effects of nationwide training of multiprofessional trauma teams in norwegian hospitals. J Trauma Acute Care Surg. 2008;64(6):1613–8.CrossRef
8.
go back to reference Park C, Grant J, Dumas RP, Dultz L, Shoultz TH, Scott DJ, et al. Does simulation work? Monthly trauma simulation and procedural training are associated with decreased time to intervention. J Trauma Acute Care Surg. 2020;88(2):242–8.CrossRef Park C, Grant J, Dumas RP, Dultz L, Shoultz TH, Scott DJ, et al. Does simulation work? Monthly trauma simulation and procedural training are associated with decreased time to intervention. J Trauma Acute Care Surg. 2020;88(2):242–8.CrossRef
9.
go back to reference Sharara-Chami R, Lakissian Z, Farha R, Tamim H, Batley N. In-Situ simulation for enhancing teamwork in the emergency department. Am J Emerg Med. 2020;38(4):833–4.CrossRef Sharara-Chami R, Lakissian Z, Farha R, Tamim H, Batley N. In-Situ simulation for enhancing teamwork in the emergency department. Am J Emerg Med. 2020;38(4):833–4.CrossRef
10.
go back to reference Ajmi SC, Advani R, Fjetland L, Kurz KD, Lindner T, Qvindesland SA, et al. Reducing door-to-needle times in stroke thrombolysis to 13 min through protocol revision and simulation training: a quality improvement project in a Norwegian stroke centre. BMJ Qual Saf. 2019;28(11):939–48.CrossRef Ajmi SC, Advani R, Fjetland L, Kurz KD, Lindner T, Qvindesland SA, et al. Reducing door-to-needle times in stroke thrombolysis to 13 min through protocol revision and simulation training: a quality improvement project in a Norwegian stroke centre. BMJ Qual Saf. 2019;28(11):939–48.CrossRef
11.
go back to reference Steinemann S, Berg B, Skinner A, DiTulio A, Anzelon K, Terada K, et al. In situ, multidisciplinary, simulation-based teamwork training improves early trauma care. J Surg Educ. 2011;68(6):472–7.CrossRef Steinemann S, Berg B, Skinner A, DiTulio A, Anzelon K, Terada K, et al. In situ, multidisciplinary, simulation-based teamwork training improves early trauma care. J Surg Educ. 2011;68(6):472–7.CrossRef
13.
go back to reference So EHK, Chia NH, Ng GWY, Chan OPK, Yuen SL, Lung DC, et al. Multidisciplinary simulation training for endotracheal intubation during COVID-19 in one Hong Kong regional hospital: strengthening of existing procedures and preparedness. BMJ Simul Techn Enhanc Learn. 2021:bmjstel-2020–000766. https://doi.org/10.1136/bmjstel-2020-000766. Epub 2021 May 25. So EHK, Chia NH, Ng GWY, Chan OPK, Yuen SL, Lung DC, et al. Multidisciplinary simulation training for endotracheal intubation during COVID-19 in one Hong Kong regional hospital: strengthening of existing procedures and preparedness. BMJ Simul Techn Enhanc Learn. 2021:bmjstel-2020–000766. https://​doi.​org/​10.​1136/​bmjstel-2020-000766. Epub 2021 May 25.
14.
go back to reference Youssef FA, Patel M, Park H, Patel JV, Leo J, Tanios MA. Protected code blue: using in situ simulation to develop a protected code blue and modify staff training protocol—experience in a large community teaching hospital during the COVID-19 pandemic. BMJ Open Quality. 2021;10(1):e001097.CrossRef Youssef FA, Patel M, Park H, Patel JV, Leo J, Tanios MA. Protected code blue: using in situ simulation to develop a protected code blue and modify staff training protocol—experience in a large community teaching hospital during the COVID-19 pandemic. BMJ Open Quality. 2021;10(1):e001097.CrossRef
15.
go back to reference Kurz MW, Ospel JM, DaehliKurz K, Goyal M. Improving stroke care in times of the COVID-19 pandemic through simulation: practice your protocols! Stroke. 2020;51(7):2273–5.CrossRef Kurz MW, Ospel JM, DaehliKurz K, Goyal M. Improving stroke care in times of the COVID-19 pandemic through simulation: practice your protocols! Stroke. 2020;51(7):2273–5.CrossRef
16.
go back to reference Wenlock RD, Arnold A, Patel H, Kirtchuk D. Low-fidelity simulation of medical emergency and cardiac arrest responses in a suspected COVID-19 patient - an interim report. Clin Med (Lond). 2020;20(4):e66–71.CrossRef Wenlock RD, Arnold A, Patel H, Kirtchuk D. Low-fidelity simulation of medical emergency and cardiac arrest responses in a suspected COVID-19 patient - an interim report. Clin Med (Lond). 2020;20(4):e66–71.CrossRef
18.
go back to reference Chaplin T, McColl T, Petrosoniak A, Hall AK. “Building the plane as you fly”: simulation during the COVID-19 pandemic. Canadian Journal of Emergency Medicine. 2020;22(5):576–8.CrossRef Chaplin T, McColl T, Petrosoniak A, Hall AK. “Building the plane as you fly”: simulation during the COVID-19 pandemic. Canadian Journal of Emergency Medicine. 2020;22(5):576–8.CrossRef
19.
go back to reference Choi GY, Wan WT, Chan AK, Tong SK, Poon ST, Joynt GM. Preparedness for COVID-19: in situ simulation to enhance infection control systems in the intensive care unit. Br J Anaesth. 2020;125(2):e236.CrossRef Choi GY, Wan WT, Chan AK, Tong SK, Poon ST, Joynt GM. Preparedness for COVID-19: in situ simulation to enhance infection control systems in the intensive care unit. Br J Anaesth. 2020;125(2):e236.CrossRef
20.
go back to reference Muret-Wagstaff SL, Collins JS, Mashman DL, Patel SG, Pettorini K, Rosen SA, et al. In situ simulation enables operating room agility in the COVID-19 pandemic. Ann Surg. 2020;272(2):e148.CrossRef Muret-Wagstaff SL, Collins JS, Mashman DL, Patel SG, Pettorini K, Rosen SA, et al. In situ simulation enables operating room agility in the COVID-19 pandemic. Ann Surg. 2020;272(2):e148.CrossRef
21.
go back to reference Malysz M, Dabrowski M, Böttiger BW, Smereka J, Kulak K, Szarpak A, et al. Resuscitation of the patient with suspected/confirmed COVID-19 when wearing personal protective equipment: a randomized multicenter crossover simulation trial. Cardiol J. 2020;27(5):497–506.PubMedPubMedCentral Malysz M, Dabrowski M, Böttiger BW, Smereka J, Kulak K, Szarpak A, et al. Resuscitation of the patient with suspected/confirmed COVID-19 when wearing personal protective equipment: a randomized multicenter crossover simulation trial. Cardiol J. 2020;27(5):497–506.PubMedPubMedCentral
22.
go back to reference Begley J, Lavery K, Nickson C, Brewster D. The aerosol box for intubation in coronavirus disease 2019 patients: an in-situ simulation crossover study. Anaesthesia. 2020;75(8):1014–21.CrossRef Begley J, Lavery K, Nickson C, Brewster D. The aerosol box for intubation in coronavirus disease 2019 patients: an in-situ simulation crossover study. Anaesthesia. 2020;75(8):1014–21.CrossRef
23.
go back to reference Gardiner C, Veall J, Lockhart S. The use of UV fluorescent powder for COVID-19 airway management simulation training. Anaesthesia. 2020;75(7):964–5.CrossRef Gardiner C, Veall J, Lockhart S. The use of UV fluorescent powder for COVID-19 airway management simulation training. Anaesthesia. 2020;75(7):964–5.CrossRef
24.
go back to reference Sharma D, Rubel KE, Ye MJ, Shipchandler TZ, Wu AW, Higgins TS, et al. Cadaveric simulation of endoscopic endonasal procedures: analysis of droplet splatter patterns during the COVID-19 pandemic. Otolaryngol Head Neck Surg. 2020;163(1):145–50. Sharma D, Rubel KE, Ye MJ, Shipchandler TZ, Wu AW, Higgins TS, et al. Cadaveric simulation of endoscopic endonasal procedures: analysis of droplet splatter patterns during the COVID-19 pandemic. Otolaryngol Head Neck Surg. 2020;163(1):145–50.
25.
go back to reference Shojaee S, Pourhoseingholi MA, Ashtari S, Vahedian-Azimi A, Asadzadeh-Aghdaei H, Zali MR. Predicting the mortality due to Covid-19 by the next month for Italy, Iran and South Korea; a simulation study. Gastroenterol Hepatol Bed Bench. 2020;13(2):177.PubMedPubMedCentral Shojaee S, Pourhoseingholi MA, Ashtari S, Vahedian-Azimi A, Asadzadeh-Aghdaei H, Zali MR. Predicting the mortality due to Covid-19 by the next month for Italy, Iran and South Korea; a simulation study. Gastroenterol Hepatol Bed Bench. 2020;13(2):177.PubMedPubMedCentral
27.
go back to reference Alban A, Chick SE, Dongelmans DA, Vlaar AP, Sent D. ICU capacity management during the COVID-19 pandemic using a process simulation. Intensive Care Med. 2020;46(8):1624–6.CrossRef Alban A, Chick SE, Dongelmans DA, Vlaar AP, Sent D. ICU capacity management during the COVID-19 pandemic using a process simulation. Intensive Care Med. 2020;46(8):1624–6.CrossRef
28.
go back to reference Gaba DM. The future vision of simulation in health care. Qual Saf Health Care. 2004;13(Suppl 1):i2-10.CrossRef Gaba DM. The future vision of simulation in health care. Qual Saf Health Care. 2004;13(Suppl 1):i2-10.CrossRef
30.
go back to reference Gaba DM. The future vision of simulation in healthcare. Simul Healthc. 2007;2(2):126–35.CrossRef Gaba DM. The future vision of simulation in healthcare. Simul Healthc. 2007;2(2):126–35.CrossRef
31.
go back to reference Sollid SJM, Dieckman P, Aase K, Soreide E, Ringsted C, Ostergaard D. Five topics health care simulation can address to improve patient safety: results from a consensus process. J Patient Saf. 2019;15(2):111–20.CrossRef Sollid SJM, Dieckman P, Aase K, Soreide E, Ringsted C, Ostergaard D. Five topics health care simulation can address to improve patient safety: results from a consensus process. J Patient Saf. 2019;15(2):111–20.CrossRef
32.
go back to reference Kjaergaard-Andersen G, Ibsgaard P, Paltved C, Irene Jensen H. An in situ simulation program: a quantitative and qualitative prospective study identifying latent safety threats and examining participant experiences. Int J Qual Health Care. 2021;33(1):mzaa148.CrossRef Kjaergaard-Andersen G, Ibsgaard P, Paltved C, Irene Jensen H. An in situ simulation program: a quantitative and qualitative prospective study identifying latent safety threats and examining participant experiences. Int J Qual Health Care. 2021;33(1):mzaa148.CrossRef
33.
go back to reference Colman N, Dalpiaz A, Walter S, Chambers MS, Hebbar KB. SAFEE: a debriefing tool to identify latent conditions in simulation-based hospital design testing. Adv Simul. 2020;5(1):1–12.CrossRef Colman N, Dalpiaz A, Walter S, Chambers MS, Hebbar KB. SAFEE: a debriefing tool to identify latent conditions in simulation-based hospital design testing. Adv Simul. 2020;5(1):1–12.CrossRef
34.
go back to reference Reedy GB. Using cognitive load theory to inform simulation design and practice. Clin Simul Nurs. 2015;11(8):355–60.CrossRef Reedy GB. Using cognitive load theory to inform simulation design and practice. Clin Simul Nurs. 2015;11(8):355–60.CrossRef
35.
go back to reference Abulebda K, Ahmed RA, Auerbach MA, Bona AM, Falvo LE, Hughes PG, et al. National preparedness survey of pediatric intensive care units with simulation centers during the coronavirus pandemic. World J Crit Care Med. 2020;9(5):74–87.CrossRef Abulebda K, Ahmed RA, Auerbach MA, Bona AM, Falvo LE, Hughes PG, et al. National preparedness survey of pediatric intensive care units with simulation centers during the coronavirus pandemic. World J Crit Care Med. 2020;9(5):74–87.CrossRef
36.
go back to reference Wong AH, Ahmed RA, Ray JM, Khan H, Hughes PG, McCoy CE, et al. Supporting the quadruple aim using simulation and human factors during COVID-19 care. Am J Med Qual. 2021;36(2):73–83.CrossRef Wong AH, Ahmed RA, Ray JM, Khan H, Hughes PG, McCoy CE, et al. Supporting the quadruple aim using simulation and human factors during COVID-19 care. Am J Med Qual. 2021;36(2):73–83.CrossRef
37.
go back to reference Lie SA, Wong LT, Chee M, Chong SY. Process-oriented in situ simulation is a valuable tool to rapidly ensure operating room preparedness for COVID-19 outbreak. Simul Healthc. 2020;15(4):225–33.CrossRef Lie SA, Wong LT, Chee M, Chong SY. Process-oriented in situ simulation is a valuable tool to rapidly ensure operating room preparedness for COVID-19 outbreak. Simul Healthc. 2020;15(4):225–33.CrossRef
38.
go back to reference Okuda Y, Bond W, Bonfante G, McLaughlin S, Spillane L, Wang E, et al. National growth in simulation training within emergency medicine residency programs, 2003–2008. Acad Emerg Med. 2008;15(11):1113–6.CrossRef Okuda Y, Bond W, Bonfante G, McLaughlin S, Spillane L, Wang E, et al. National growth in simulation training within emergency medicine residency programs, 2003–2008. Acad Emerg Med. 2008;15(11):1113–6.CrossRef
40.
go back to reference Wilford A, Doyle TJ. Integrating simulation training into the nursing curriculum. Br J Nurs. 2006;15(17):926–30.CrossRef Wilford A, Doyle TJ. Integrating simulation training into the nursing curriculum. Br J Nurs. 2006;15(17):926–30.CrossRef
42.
go back to reference Cohen WM, Levinthal DA. Absorptive capacity: A new perspective on learning and innovation. Administrative science quarterly. 1990. p. 128–52. Cohen WM, Levinthal DA. Absorptive capacity: A new perspective on learning and innovation. Administrative science quarterly. 1990. p. 128–52.
43.
go back to reference Schon D. donald schon (schön): learning, reflection and change. Accessed April. 1983;11:2004. Schon D. donald schon (schön): learning, reflection and change. Accessed April. 1983;11:2004.
44.
go back to reference Husebø SE, O’Regan S, Nestel D. Reflective practice and its role in simulation. Clin Simul Nurs. 2015;11(8):368–75. Husebø SE, O’Regan S, Nestel D. Reflective practice and its role in simulation. Clin Simul Nurs. 2015;11(8):368–75.
45.
go back to reference Argyris C, Schön DA. Organizational learning: A theory of action perspective. Reis. 1997(77/78):345–8. Argyris C, Schön DA. Organizational learning: A theory of action perspective. Reis. 1997(77/78):345–8.
46.
go back to reference Dieckmann P, Torgeirsen K, Qvindesland SA, Thomas L, Bushell V, Langli EH. The use of simulation to prepare and improve responses to infectious disease outbreaks like COVID-19: practical tips and resources from Norway, Denmark, and the UK. Adv Simul (Lond). 2020;5:3.CrossRef Dieckmann P, Torgeirsen K, Qvindesland SA, Thomas L, Bushell V, Langli EH. The use of simulation to prepare and improve responses to infectious disease outbreaks like COVID-19: practical tips and resources from Norway, Denmark, and the UK. Adv Simul (Lond). 2020;5:3.CrossRef
47.
go back to reference Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101.CrossRef Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101.CrossRef
48.
go back to reference Nonaka I, Takeuchi H. The knowledge-creating company: How Japanese companies create the dynamics of innovation (Vol. 105). OUP USA. 1995. Nonaka I, Takeuchi H. The knowledge-creating company: How Japanese companies create the dynamics of innovation (Vol. 105). OUP USA. 1995.
Metadata
Title
Exploring health service preparation for the COVID-19 crisis utilizing simulation-based activities in a Norwegian hospital: a qualitative case study
Authors
Une Elisabeth Stømer
Peter Dieckmann
Thomas Laudal
Kristi Bjørnes Skeie
Sigrun Anna Qvindesland
Hege Langli Ersdal
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
COVID-19
Published in
BMC Health Services Research / Issue 1/2022
Electronic ISSN: 1472-6963
DOI
https://doi.org/10.1186/s12913-022-07826-5

Other articles of this Issue 1/2022

BMC Health Services Research 1/2022 Go to the issue