Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Research

Comparison of the protective effects of CS/TPP and CS/HPMCP nanoparticles containing berberine in ethanol-induced hepatotoxicity in rat

Authors: Maral Mahboubi Kancha, Morteza Alizadeh, Mohsen Mehrabi

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

Background

Alcoholic liver disease (ALD) is a globally critical condition with no available efficient treatments.

Methods

Herein, we generated chitosan (CS) nanoparticles cross-linked with two different agents, hydroxypropyl methylcellulose phthalate (HPMCP; termed as CS/HPMCP) and tripolyphosphate (TPP; termed as CS/TPP), and loaded them with berberine (BBr; referred to as CS/HPMCP/BBr and CS/TPP/BBr, respectively). Alongside the encapsulation efficiency (EE) and loading capacity (LC), the releasing activity of the nanoparticles was also measured in stimulated gastric fluid (SGF) and stimulated intestinal fluid (SIF) conditions. The effects of the prepared nanoparticles on the viability of mesenchymal stem cells (MSCs) were also evaluated. Ultimately, the protective effects of the nanoparticles were investigated in ALD mouse models.

Results

SEM images demonstrated that CS/HPMCP and CS/TPP nanoparticles had an average size of 235.5 ± 42 and 172 ± 21 nm, respectively. The LC and EE for CS/HPMCP/BBr were calculated as 79.78% and 75.79%, respectively; while the LC and EE for CS/TPP/BBr were 84.26% and 80.05%, respectively. pH was a determining factor for releasing BBr from CS/HPMCP nanoparticles as a higher cargo-releasing rate was observed in a less acidic environment. Both the BBr-loaded nanoparticles increased the viability of MSCs in comparison with their BBr-free counterparts. In vivo results demonstrated CS/HPMCP/BBr and CS/TPP/BBr nanoparticles protected enzymatic liver functionality against ethanol-induced damage. They also prevented histopathological ethanol-induced damage.

Conclusions

Crosslinking CS nanoparticles with HPMCP can mediate controlled drug release in the intestine improving the bioavailability of BBr.
Literature
1.
go back to reference Yoon YH, Chen CM, Slater ME, Jung MK, White AM. Trends in premature deaths from alcoholic Liver Disease in the U.S., 1999–2018. Am J Prev Med. 2020;59(4):469–80.PubMedPubMedCentralCrossRef Yoon YH, Chen CM, Slater ME, Jung MK, White AM. Trends in premature deaths from alcoholic Liver Disease in the U.S., 1999–2018. Am J Prev Med. 2020;59(4):469–80.PubMedPubMedCentralCrossRef
2.
5.
go back to reference Goldberg D, Ditah IC, Saeian K, Lalehzari M, Aronsohn A, Gorospe EC, et al. Changes in the prevalence of Hepatitis C virus Infection, nonalcoholic steatohepatitis, and alcoholic Liver Disease among patients with Cirrhosis or Liver Failure on the Waitlist for Liver Transplantation. Gastroenterology. 2017;152(5):1090–9e1.PubMedCrossRef Goldberg D, Ditah IC, Saeian K, Lalehzari M, Aronsohn A, Gorospe EC, et al. Changes in the prevalence of Hepatitis C virus Infection, nonalcoholic steatohepatitis, and alcoholic Liver Disease among patients with Cirrhosis or Liver Failure on the Waitlist for Liver Transplantation. Gastroenterology. 2017;152(5):1090–9e1.PubMedCrossRef
7.
go back to reference Tilg H, Day CP. Management strategies in alcoholic Liver Disease. Nat Clin Pract Gastroenterol Hepatol. 2007;4(1):24–34.PubMedCrossRef Tilg H, Day CP. Management strategies in alcoholic Liver Disease. Nat Clin Pract Gastroenterol Hepatol. 2007;4(1):24–34.PubMedCrossRef
8.
go back to reference Li L, Cui H, Li T, Qi J, Chen H, Gao F, et al. Synergistic effect of berberine-based Chinese medicine assembled nanostructures on diarrhea-predominant irritable bowel syndrome in vivo. Front Pharmacol. 2020;11:1210.PubMedPubMedCentralCrossRef Li L, Cui H, Li T, Qi J, Chen H, Gao F, et al. Synergistic effect of berberine-based Chinese medicine assembled nanostructures on diarrhea-predominant irritable bowel syndrome in vivo. Front Pharmacol. 2020;11:1210.PubMedPubMedCentralCrossRef
9.
go back to reference Singh IP, Mahajan S. Berberine and its derivatives: a patent review (2009–2012). Expert Opin Ther Pat. 2013;23(2):215–31.PubMedCrossRef Singh IP, Mahajan S. Berberine and its derivatives: a patent review (2009–2012). Expert Opin Ther Pat. 2013;23(2):215–31.PubMedCrossRef
10.
go back to reference Germoush MO, Mahmoud AM. Berberine mitigates cyclophosphamide-induced hepatotoxicity by modulating antioxidant status and inflammatory cytokines. J Cancer Res Clin Oncol. 2014;140(7):1103–9.PubMedCrossRef Germoush MO, Mahmoud AM. Berberine mitigates cyclophosphamide-induced hepatotoxicity by modulating antioxidant status and inflammatory cytokines. J Cancer Res Clin Oncol. 2014;140(7):1103–9.PubMedCrossRef
11.
go back to reference Knittel T, Mehde M, Grundmann A, Saile B, Scharf JG, Ramadori G. Expression of matrix metalloproteinases and their inhibitors during hepatic tissue repair in the rat. Histochem Cell Biol. 2000;113(6):443–53.PubMedCrossRef Knittel T, Mehde M, Grundmann A, Saile B, Scharf JG, Ramadori G. Expression of matrix metalloproteinases and their inhibitors during hepatic tissue repair in the rat. Histochem Cell Biol. 2000;113(6):443–53.PubMedCrossRef
12.
go back to reference Wang N, Xu Q, Tan HY, Hong M, Li S, Yuen MF, et al. Berberine Inhibition of Fibrogenesis in a rat model of liver fibrosis and in hepatic stellate cells. Evid Based Complement Alternat Med. 2016;2016:8762345.PubMedPubMedCentral Wang N, Xu Q, Tan HY, Hong M, Li S, Yuen MF, et al. Berberine Inhibition of Fibrogenesis in a rat model of liver fibrosis and in hepatic stellate cells. Evid Based Complement Alternat Med. 2016;2016:8762345.PubMedPubMedCentral
13.
go back to reference Li S, Wang N, Tan HY, Chueng F, Zhang ZJ, Yuen MF, et al. Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic Liver Disease. Clin Transl Med. 2020;10(4):e112.PubMedPubMedCentralCrossRef Li S, Wang N, Tan HY, Chueng F, Zhang ZJ, Yuen MF, et al. Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic Liver Disease. Clin Transl Med. 2020;10(4):e112.PubMedPubMedCentralCrossRef
14.
go back to reference Zhang P, Ma D, Wang Y, Zhang M, Qiang X, Liao M, et al. Berberine protects liver from ethanol-induced oxidative stress and steatosis in mice. Food Chem Toxicol. 2014;74:225–32.PubMedCrossRef Zhang P, Ma D, Wang Y, Zhang M, Qiang X, Liao M, et al. Berberine protects liver from ethanol-induced oxidative stress and steatosis in mice. Food Chem Toxicol. 2014;74:225–32.PubMedCrossRef
15.
go back to reference Sreeja S, Krishnan Nair CK. Tumor control by hypoxia-specific chemotargeting of iron-oxide nanoparticle - berberine complexes in a mouse model. Life Sci. 2018;195:71–80.PubMedCrossRef Sreeja S, Krishnan Nair CK. Tumor control by hypoxia-specific chemotargeting of iron-oxide nanoparticle - berberine complexes in a mouse model. Life Sci. 2018;195:71–80.PubMedCrossRef
16.
go back to reference Wang L, Li H, Wang S, Liu R, Wu Z, Wang C, et al. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech. 2014;15(4):834–44.PubMedPubMedCentralCrossRef Wang L, Li H, Wang S, Liu R, Wu Z, Wang C, et al. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech. 2014;15(4):834–44.PubMedPubMedCentralCrossRef
17.
go back to reference Zhao Z, Han Z, Naveena K, Lei G, Qiu S, Li X, et al. ROS-Responsive nanoparticle as a berberine carrier for OHC-Targeted therapy of noise-Induced hearing loss. ACS Appl Mater Interfaces. 2021;13(6):7102–14.PubMedCrossRef Zhao Z, Han Z, Naveena K, Lei G, Qiu S, Li X, et al. ROS-Responsive nanoparticle as a berberine carrier for OHC-Targeted therapy of noise-Induced hearing loss. ACS Appl Mater Interfaces. 2021;13(6):7102–14.PubMedCrossRef
18.
go back to reference Li T, Wang P, Guo W, Huang X, Tian X, Wu G, et al. Natural berberine-based Chinese Herb Medicine assembled nanostructures with modified antibacterial application. ACS Nano. 2019;13(6):6770–81.PubMedCrossRef Li T, Wang P, Guo W, Huang X, Tian X, Wu G, et al. Natural berberine-based Chinese Herb Medicine assembled nanostructures with modified antibacterial application. ACS Nano. 2019;13(6):6770–81.PubMedCrossRef
19.
go back to reference Battu SK, Repka MA, Maddineni S, Chittiboyina AG, Avery MA, Majumdar S. Physicochemical characterization of berberine chloride: a perspective in the development of a solution dosage form for oral delivery. AAPS PharmSciTech. 2010;11(3):1466–75.PubMedPubMedCentralCrossRef Battu SK, Repka MA, Maddineni S, Chittiboyina AG, Avery MA, Majumdar S. Physicochemical characterization of berberine chloride: a perspective in the development of a solution dosage form for oral delivery. AAPS PharmSciTech. 2010;11(3):1466–75.PubMedPubMedCentralCrossRef
20.
go back to reference Shen R, Kim JJ, Yao M, Elbayoumi TA. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical. Int J Nanomed. 2016;11:1687–700. Shen R, Kim JJ, Yao M, Elbayoumi TA. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical. Int J Nanomed. 2016;11:1687–700.
21.
go back to reference Liu C-S, Zheng Y-R, Zhang Y-F, Long X-Y. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia. 2016;109:274–82.PubMedCrossRef Liu C-S, Zheng Y-R, Zhang Y-F, Long X-Y. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia. 2016;109:274–82.PubMedCrossRef
22.
go back to reference Fan D, Wu X, Dong W, Sun W, Li J, Tang X. Enhancement by sodium caprate and sodium deoxycholate of the gastrointestinal absorption of berberine chloride in rats. Drug Dev Ind Pharm. 2013;39(9):1447–56.PubMedCrossRef Fan D, Wu X, Dong W, Sun W, Li J, Tang X. Enhancement by sodium caprate and sodium deoxycholate of the gastrointestinal absorption of berberine chloride in rats. Drug Dev Ind Pharm. 2013;39(9):1447–56.PubMedCrossRef
23.
go back to reference Wang Y, Wen B, Yu H, Ding D, Zhang J, Zhang Y, et al. Berberine Hydrochloride-Loaded Chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma. J Biomed Nanotechnol. 2018;14(8):1486–95.PubMedCrossRef Wang Y, Wen B, Yu H, Ding D, Zhang J, Zhang Y, et al. Berberine Hydrochloride-Loaded Chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma. J Biomed Nanotechnol. 2018;14(8):1486–95.PubMedCrossRef
24.
go back to reference Saleh SR, Abady MM, Nofal M, Yassa NW, Abdel-Latif MS, Nounou MI, et al. Berberine Nanoencapsulation attenuates Hallmarks of Scoplomine Induced Alzheimer’s-Like Disease in rats. Curr Reviews Clin Experimental Pharmacol. 2021;16(2):139–54.CrossRef Saleh SR, Abady MM, Nofal M, Yassa NW, Abdel-Latif MS, Nounou MI, et al. Berberine Nanoencapsulation attenuates Hallmarks of Scoplomine Induced Alzheimer’s-Like Disease in rats. Curr Reviews Clin Experimental Pharmacol. 2021;16(2):139–54.CrossRef
25.
go back to reference Kapoor R, Singh S, Tripathi M, Bhatnagar P, Kakkar P, Gupta KC. O-hexadecyl-dextran entrapped berberine nanoparticles abrogate high glucose stress induced apoptosis in primary rat hepatocytes. PLoS ONE. 2014;9(2):e89124.PubMedPubMedCentralCrossRef Kapoor R, Singh S, Tripathi M, Bhatnagar P, Kakkar P, Gupta KC. O-hexadecyl-dextran entrapped berberine nanoparticles abrogate high glucose stress induced apoptosis in primary rat hepatocytes. PLoS ONE. 2014;9(2):e89124.PubMedPubMedCentralCrossRef
26.
go back to reference Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S. Protective effect of selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl. 2014;29(2):303–17.PubMedCrossRef Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S. Protective effect of selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl. 2014;29(2):303–17.PubMedCrossRef
27.
go back to reference Tabbasam R, Khursid S, Ishaq Y, Malik A. Vivo evaluation of Inorganic Nanoparticle complexes against CCL4 Induced Hepatotoxicity. Curr Drug Deliv. 2021;18(8):1197–203.PubMedCrossRef Tabbasam R, Khursid S, Ishaq Y, Malik A. Vivo evaluation of Inorganic Nanoparticle complexes against CCL4 Induced Hepatotoxicity. Curr Drug Deliv. 2021;18(8):1197–203.PubMedCrossRef
28.
go back to reference Abdelhalim MAK, Moussa SAA, Qaid HA, Al-Ayed MS. Effect of melanin on gold nanoparticle-induced hepatotoxicity and lipid peroxidation in rats. Int J Nanomed. 2018;13:5207–13.CrossRef Abdelhalim MAK, Moussa SAA, Qaid HA, Al-Ayed MS. Effect of melanin on gold nanoparticle-induced hepatotoxicity and lipid peroxidation in rats. Int J Nanomed. 2018;13:5207–13.CrossRef
29.
go back to reference Albrahim T, Alonazi MA. Role of Beetroot (Beta vulgaris) Juice on Chronic Nanotoxicity of Silver Nanoparticle-Induced Hepatotoxicity in male rats. Int J Nanomed. 2020;15:3471–82.CrossRef Albrahim T, Alonazi MA. Role of Beetroot (Beta vulgaris) Juice on Chronic Nanotoxicity of Silver Nanoparticle-Induced Hepatotoxicity in male rats. Int J Nanomed. 2020;15:3471–82.CrossRef
30.
go back to reference Ansar S, Abudawood M, Alaraj ASA, Hamed SS. Hesperidin alleviates zinc oxide nanoparticle induced hepatotoxicity and oxidative stress. BMC Pharmacol Toxicol. 2018;19(1):65.PubMedPubMedCentralCrossRef Ansar S, Abudawood M, Alaraj ASA, Hamed SS. Hesperidin alleviates zinc oxide nanoparticle induced hepatotoxicity and oxidative stress. BMC Pharmacol Toxicol. 2018;19(1):65.PubMedPubMedCentralCrossRef
31.
go back to reference Mahya S, Ai J, Shojae S, Khonakdar HA, Darbemamieh G, Shirian S. Berberine loaded chitosan nanoparticles encapsulated in polysaccharide-based hydrogel for the repair of spinal cord. Int J Biol Macromol. 2021;182:82–90.PubMedCrossRef Mahya S, Ai J, Shojae S, Khonakdar HA, Darbemamieh G, Shirian S. Berberine loaded chitosan nanoparticles encapsulated in polysaccharide-based hydrogel for the repair of spinal cord. Int J Biol Macromol. 2021;182:82–90.PubMedCrossRef
32.
go back to reference Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of Chitosan Nanoparticles and its application in Non-parenteral Drug Delivery. Pharmaceutics. 2017;9(4). Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of Chitosan Nanoparticles and its application in Non-parenteral Drug Delivery. Pharmaceutics. 2017;9(4).
33.
go back to reference Du H, Liu M, Yang X, Zhai G. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discovery Today. 2015;20(8):1004–11.PubMedCrossRef Du H, Liu M, Yang X, Zhai G. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discovery Today. 2015;20(8):1004–11.PubMedCrossRef
34.
go back to reference Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–51.PubMedCrossRef Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–51.PubMedCrossRef
35.
go back to reference Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B. 2012;90:21–7.CrossRef Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B. 2012;90:21–7.CrossRef
36.
go back to reference Pedroso-Santana S, Fleitas‐Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int. 2020;69(5):443–7.CrossRef Pedroso-Santana S, Fleitas‐Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int. 2020;69(5):443–7.CrossRef
37.
go back to reference Kruger NJ. The Bradford method for protein quantitation. The Protein Protocols Handbook. 2009:17–24. Kruger NJ. The Bradford method for protein quantitation. The Protein Protocols Handbook. 2009:17–24.
38.
go back to reference Alalawy AI, El Rabey HA, Almutairi FM, Tayel AA, Al-Duais MA, Zidan NS et al. Effectual anticancer potentiality of loaded bee venom onto fungal chitosan nanoparticles. International journal of polymer science. 2020;2020. Alalawy AI, El Rabey HA, Almutairi FM, Tayel AA, Al-Duais MA, Zidan NS et al. Effectual anticancer potentiality of loaded bee venom onto fungal chitosan nanoparticles. International journal of polymer science. 2020;2020.
39.
go back to reference Li P, Dai Y-N, Zhang J-P, Wang A-Q, Wei Q. Chitosan-Alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomedical Science: IJBS. 2008;4(3):221.CrossRef Li P, Dai Y-N, Zhang J-P, Wang A-Q, Wei Q. Chitosan-Alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomedical Science: IJBS. 2008;4(3):221.CrossRef
40.
go back to reference Díaz MS, Freile ML, Gutiérrez MI. Solvent effect on the UV/Vis absorption and fluorescence spectroscopic properties of berberine. Photochem Photobiol Sci. 2009;8(7):970–4.PubMedCrossRef Díaz MS, Freile ML, Gutiérrez MI. Solvent effect on the UV/Vis absorption and fluorescence spectroscopic properties of berberine. Photochem Photobiol Sci. 2009;8(7):970–4.PubMedCrossRef
41.
go back to reference Naveen NR, Kurakula M, Gowthami B. Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles. Materials Today: Proceedings. 2020;33:2716-24. Naveen NR, Kurakula M, Gowthami B. Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles. Materials Today: Proceedings. 2020;33:2716-24.
42.
go back to reference Shield KD, Parry C, Rehm J. Chronic Diseases and conditions related to alcohol use. Alcohol Res. 2013;35(2):155–73.PubMed Shield KD, Parry C, Rehm J. Chronic Diseases and conditions related to alcohol use. Alcohol Res. 2013;35(2):155–73.PubMed
43.
go back to reference Roerecke M, Vafaei A, Hasan OSM, Chrystoja BR, Cruz M, Lee R, et al. Alcohol consumption and risk of liver Cirrhosis: a systematic review and Meta-analysis. Am J Gastroenterol. 2019;114(10):1574–86.PubMedPubMedCentralCrossRef Roerecke M, Vafaei A, Hasan OSM, Chrystoja BR, Cruz M, Lee R, et al. Alcohol consumption and risk of liver Cirrhosis: a systematic review and Meta-analysis. Am J Gastroenterol. 2019;114(10):1574–86.PubMedPubMedCentralCrossRef
44.
45.
go back to reference Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: who is the best for Biotechnological Production of Bioactive compounds with antioxidant properties and other Biological applications? Mar Drugs. 2020;18(1):28.CrossRef Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: who is the best for Biotechnological Production of Bioactive compounds with antioxidant properties and other Biological applications? Mar Drugs. 2020;18(1):28.CrossRef
46.
go back to reference Contreras-Zentella ML, Villalobos-García D, Hernández-Muñoz R. Ethanol metabolism in the liver, the induction of oxidant stress, and the antioxidant Defense System. Antioxidants. 2022;11(7):1258.PubMedPubMedCentralCrossRef Contreras-Zentella ML, Villalobos-García D, Hernández-Muñoz R. Ethanol metabolism in the liver, the induction of oxidant stress, and the antioxidant Defense System. Antioxidants. 2022;11(7):1258.PubMedPubMedCentralCrossRef
47.
go back to reference Frazier TH, Stocker AM, Kershner NA, Marsano LS, McClain CJ. Treatment of alcoholic Liver Disease. Th Adv Gastroenterol. 2011;4(1):63–81.CrossRef Frazier TH, Stocker AM, Kershner NA, Marsano LS, McClain CJ. Treatment of alcoholic Liver Disease. Th Adv Gastroenterol. 2011;4(1):63–81.CrossRef
48.
go back to reference Parker R, McCune CA. Diagnosis and treatment of alcoholic hepatitis. Frontline Gastroenterol. 2014;5(2):123–9.PubMedCrossRef Parker R, McCune CA. Diagnosis and treatment of alcoholic hepatitis. Frontline Gastroenterol. 2014;5(2):123–9.PubMedCrossRef
50.
go back to reference Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med. 2020;14(5):564–82.PubMedCrossRef Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med. 2020;14(5):564–82.PubMedCrossRef
52.
go back to reference Mohammadzadeh N, Mehri S, Hosseinzadeh H. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. Iran J Basic Med Sci. 2017;20(5):538–51.PubMedPubMedCentral Mohammadzadeh N, Mehri S, Hosseinzadeh H. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. Iran J Basic Med Sci. 2017;20(5):538–51.PubMedPubMedCentral
53.
go back to reference Zhu WQ, Wu HY, Sun ZH, Guo Y, Ge TT, Li BJ, et al. Current evidence and future directions of Berberine intervention in Depression. Front Pharmacol. 2022;13:824420.PubMedPubMedCentralCrossRef Zhu WQ, Wu HY, Sun ZH, Guo Y, Ge TT, Li BJ, et al. Current evidence and future directions of Berberine intervention in Depression. Front Pharmacol. 2022;13:824420.PubMedPubMedCentralCrossRef
55.
go back to reference Haftcheshmeh SM, Abedi M, Mashayekhi K, Mousavi MJ, Navashenaq JG, Mohammadi A, et al. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res. 2022;36(3):1216–30.PubMedCrossRef Haftcheshmeh SM, Abedi M, Mashayekhi K, Mousavi MJ, Navashenaq JG, Mohammadi A, et al. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res. 2022;36(3):1216–30.PubMedCrossRef
56.
go back to reference Ai X, Yu P, Peng L, Luo L, Liu J, Li S, et al. Berberine: a review of its Pharmacokinetics properties and therapeutic potentials in Diverse Vascular Diseases. Front Pharmacol. 2021;12:762654.PubMedPubMedCentralCrossRef Ai X, Yu P, Peng L, Luo L, Liu J, Li S, et al. Berberine: a review of its Pharmacokinetics properties and therapeutic potentials in Diverse Vascular Diseases. Front Pharmacol. 2021;12:762654.PubMedPubMedCentralCrossRef
57.
go back to reference Javed Iqbal M, Quispe C, Javed Z, Sadia H, Qadri QR, Raza S, et al. Nanotechnology-based strategies for Berberine Delivery System in Cancer Treatment: pulling Strings to keep Berberine in Power. Front Mol Biosci. 2020;7:624494.PubMedCrossRef Javed Iqbal M, Quispe C, Javed Z, Sadia H, Qadri QR, Raza S, et al. Nanotechnology-based strategies for Berberine Delivery System in Cancer Treatment: pulling Strings to keep Berberine in Power. Front Mol Biosci. 2020;7:624494.PubMedCrossRef
58.
go back to reference Yanat M, Schroën K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers. 2021;161:104849.CrossRef Yanat M, Schroën K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers. 2021;161:104849.CrossRef
59.
go back to reference Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, et al. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021;21(1):318.PubMedPubMedCentralCrossRef Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, et al. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021;21(1):318.PubMedPubMedCentralCrossRef
60.
go back to reference Sacco P, Pedroso-Santana S, Kumar Y, Joly N, Martin P, Bocchetta P. Ionotropic gelation of chitosan flat structures and potential applications. Molecules. 2021;26(3):660.PubMedPubMedCentralCrossRef Sacco P, Pedroso-Santana S, Kumar Y, Joly N, Martin P, Bocchetta P. Ionotropic gelation of chitosan flat structures and potential applications. Molecules. 2021;26(3):660.PubMedPubMedCentralCrossRef
61.
go back to reference Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48(2):139–57.PubMedCrossRef Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48(2):139–57.PubMedCrossRef
62.
go back to reference Kim IH, Park JH, Cheong IW, Kim JH. Swelling and drug release behavior of tablets coated with aqueous hydroxypropyl methylcellulose phthalate (HPMCP) nanoparticles. J Control Release. 2003;89(2):225–33.PubMedCrossRef Kim IH, Park JH, Cheong IW, Kim JH. Swelling and drug release behavior of tablets coated with aqueous hydroxypropyl methylcellulose phthalate (HPMCP) nanoparticles. J Control Release. 2003;89(2):225–33.PubMedCrossRef
63.
go back to reference Xu W, Gao Q, Xu Y, Wu D, Sun Y. pH-Controlled drug release from mesoporous silica tablets coated with hydroxypropyl methylcellulose phthalate. Mater Res Bull. 2009;44(3):606–12.CrossRef Xu W, Gao Q, Xu Y, Wu D, Sun Y. pH-Controlled drug release from mesoporous silica tablets coated with hydroxypropyl methylcellulose phthalate. Mater Res Bull. 2009;44(3):606–12.CrossRef
64.
go back to reference Singh B, Maharjan S, Jiang T, Kang SK, Choi YJ, Cho CS. Attuning hydroxypropyl methylcellulose phthalate to oral delivery vehicle for effective and selective delivery of protein vaccine in ileum. Biomaterials. 2015;59:144–59.PubMedCrossRef Singh B, Maharjan S, Jiang T, Kang SK, Choi YJ, Cho CS. Attuning hydroxypropyl methylcellulose phthalate to oral delivery vehicle for effective and selective delivery of protein vaccine in ileum. Biomaterials. 2015;59:144–59.PubMedCrossRef
65.
go back to reference Mylonas C, Kouretas D. Lipid peroxidation and tissue damage. In Vivo. 1999;13(3):295–309.PubMed Mylonas C, Kouretas D. Lipid peroxidation and tissue damage. In Vivo. 1999;13(3):295–309.PubMed
66.
go back to reference Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438.PubMedPubMedCentralCrossRef Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438.PubMedPubMedCentralCrossRef
67.
go back to reference Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338(1):668–76.PubMedCrossRef Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338(1):668–76.PubMedCrossRef
68.
go back to reference Li J, Pan Y, Kan M, Xiao X, Wang Y, Guan F, et al. Hepatoprotective effects of berberine on liver fibrosis via activation of AMP-activated protein kinase. Life Sci. 2014;98(1):24–30.PubMedCrossRef Li J, Pan Y, Kan M, Xiao X, Wang Y, Guan F, et al. Hepatoprotective effects of berberine on liver fibrosis via activation of AMP-activated protein kinase. Life Sci. 2014;98(1):24–30.PubMedCrossRef
Metadata
Title
Comparison of the protective effects of CS/TPP and CS/HPMCP nanoparticles containing berberine in ethanol-induced hepatotoxicity in rat
Authors
Maral Mahboubi Kancha
Morteza Alizadeh
Mohsen Mehrabi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04318-9

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue