Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Insulins | Research

Stevia (Stevia rebaudiana) extract ameliorates insulin resistance by regulating mitochondrial function and oxidative stress in the skeletal muscle of db/db mice

Authors: Jin-Young Han, Miey Park, Hae-Jeung Lee

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Type 2 diabetes mellitus (T2DM), a growing health problem worldwide, is a metabolic disorder characterized by hyperglycemia due to insulin resistance and defective insulin secretion by pancreatic β-cells. The skeletal muscle is a central organ that consumes most of the insulin-stimulated glucose in the body, and insulin resistance can damage muscles in T2DM. Based on a strong correlation between diabetes and muscles, we investigated the effects of stevia extract (SE) and stevioside (SV) on the skeletal muscle of diabetic db/db mice.

Methods

The mice were administered saline, metformin  (200 mg/kg/day), SE (200 and 500 mg/kg/day), and SV (40 mg/kg/day) for 35 days. During administration, we checked the levels of fasting blood glucose twice a week and conducted the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). After administration, we analyzed serum biochemical parameters, triglyceride (TG), total cholesterol (TC), insulin and antioxidant enzymes, and the cross-sectional area of skeletal muscle fibers of db/db mice. Western blots were conducted using the skeletal muscle of mice to examine the effect of SE and SV on protein expression of insulin signaling, mitochondrial function, and oxidative stress.

Results

SE and SV administration lowered the levels of fasting blood glucose, OGTT, and ITT in db/db mice. The administration also decreased serum levels of TG, TC, and insulin while increasing those of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Interestingly, muscle fiber size was significantly increased in db/db mice treated with SE500 and SV. In the skeletal muscle of db/db mice, SE and SV administration activated insulin signaling by increasing the protein expression of insulin receptor substrate, Akt, and glucose transporter type 4. Furthermore, SE500 administration markedly increased the protein expression of AMP-activated protein kinase-α, sirtuin-1, and peroxisome proliferator-activated receptor-γ coactivator-1α. SV administration significantly reduced oxidative stress by down-regulating the protein expression of 4-hydroxynonenal, heme oxygenase-1, SOD, and GPx. In addition, SE500 and SV administration suppressed the expression of apoptosis-related proteins in the skeletal muscle of db/db mice.

Conclusion

SE and SV administration attenuated hyperglycemia in diabetic mice. Moreover, the administration ameliorated insulin resistance by regulating mitochondrial function and oxidative stress, increasing muscle fiber size. Overall, this study suggests that SE and SV administration may serve as a potential strategy for the treatment of diabetic muscles.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rowley WR, Bezold C. Creating public awareness: state 2025 diabetes forecasts. Popul Health Manag. 2012;15(4):194–200.CrossRefPubMed Rowley WR, Bezold C. Creating public awareness: state 2025 diabetes forecasts. Popul Health Manag. 2012;15(4):194–200.CrossRefPubMed
2.
go back to reference Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.CrossRefPubMed Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.CrossRefPubMed
3.
go back to reference DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1(1):1–22.CrossRef DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1(1):1–22.CrossRef
5.
go back to reference Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M: Complications of diabetes 2016. vol. 2016: Hindawi; 2016. Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M: Complications of diabetes 2016vol. 2016: Hindawi; 2016.
6.
go back to reference Kanwal A, Kanwar N, Bharati S, Srivastava P, Singh SP, Amar S. Exploring new drug targets for type 2 diabetes: success, challenges and opportunities. Biomedicines. 2022;10(2):331.PubMedCentralCrossRefPubMed Kanwal A, Kanwar N, Bharati S, Srivastava P, Singh SP, Amar S. Exploring new drug targets for type 2 diabetes: success, challenges and opportunities. Biomedicines. 2022;10(2):331.PubMedCentralCrossRefPubMed
7.
go back to reference Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Investig. 1990;86(5):1423–7.PubMedCentralCrossRefPubMed Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Investig. 1990;86(5):1423–7.PubMedCentralCrossRefPubMed
8.
go back to reference Merz KE, Thurmond DC. Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol. 2011;10(3):785–809. Merz KE, Thurmond DC. Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol. 2011;10(3):785–809.
9.
10.
go back to reference DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber J. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30(12):1000–7.CrossRefPubMed DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber J. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30(12):1000–7.CrossRefPubMed
12.
go back to reference Basu A, Basu R, Shah P, Vella A, Johnson CM, Nair KS, Jensen MD, Schwenk WF, Rizza RA. Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism: evidence for a defect in hepatic glucokinase activity. Diabetes. 2000;49(2):272–83.CrossRefPubMed Basu A, Basu R, Shah P, Vella A, Johnson CM, Nair KS, Jensen MD, Schwenk WF, Rizza RA. Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism: evidence for a defect in hepatic glucokinase activity. Diabetes. 2000;49(2):272–83.CrossRefPubMed
13.
go back to reference Del Aguila LF, Krishnan RK, Ulbrecht JS, Farrell PA, Correll PH, Lang CH, Zierath JR, Kirwan JP. Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;279(1):E206–12.CrossRefPubMed Del Aguila LF, Krishnan RK, Ulbrecht JS, Farrell PA, Correll PH, Lang CH, Zierath JR, Kirwan JP. Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;279(1):E206–12.CrossRefPubMed
14.
go back to reference Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ. Human skeletal muscle disuse atrophy: effects on muscle protein synthesis, breakdown, and insulin resistance—a qualitative review. Front Physiol. 2016;7:361.PubMedCentralCrossRefPubMed Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ. Human skeletal muscle disuse atrophy: effects on muscle protein synthesis, breakdown, and insulin resistance—a qualitative review. Front Physiol. 2016;7:361.PubMedCentralCrossRefPubMed
15.
go back to reference Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, Van Kranenburg J, Nilwik R, Van Loon LJ. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc. 2013;14(8):585–92.CrossRefPubMed Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, Van Kranenburg J, Nilwik R, Van Loon LJ. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc. 2013;14(8):585–92.CrossRefPubMed
16.
go back to reference Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.CrossRefPubMed Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.CrossRefPubMed
17.
go back to reference Liang J, Zhang H, Zeng Z, Wu L, Zhang Y, Guo Y, Lv J, Wang C, Fan J, Chen N. Lifelong aerobic exercise alleviates sarcopenia by activating autophagy and inhibiting protein degradation via the AMPK/PGC-1α signaling pathway. Metabolites. 2021;11(5):323.PubMedCentralCrossRefPubMed Liang J, Zhang H, Zeng Z, Wu L, Zhang Y, Guo Y, Lv J, Wang C, Fan J, Chen N. Lifelong aerobic exercise alleviates sarcopenia by activating autophagy and inhibiting protein degradation via the AMPK/PGC-1α signaling pathway. Metabolites. 2021;11(5):323.PubMedCentralCrossRefPubMed
19.
go back to reference Silvestre MFP, Viollet B, Caton P, Leclerc J, Sakakibara I, Foretz M, Holness M, Sugden M. The AMPK-SIRT signaling network regulates glucose tolerance under calorie restriction conditions. Life Sci. 2014;100(1):55–60.CrossRefPubMed Silvestre MFP, Viollet B, Caton P, Leclerc J, Sakakibara I, Foretz M, Holness M, Sugden M. The AMPK-SIRT signaling network regulates glucose tolerance under calorie restriction conditions. Life Sci. 2014;100(1):55–60.CrossRefPubMed
20.
21.
go back to reference Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal. 2005;7(7–8):1040–52.CrossRefPubMed Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal. 2005;7(7–8):1040–52.CrossRefPubMed
22.
23.
go back to reference Wang M, Pu D, Zhao Y, Chen J, Zhu S, Lu A, Liao Z, Sun Y, Xiao Q. Sulforaphane protects against skeletal muscle dysfunction in spontaneous type 2 diabetic db/db mice. Life Sci. 2020;255:117823.CrossRefPubMed Wang M, Pu D, Zhao Y, Chen J, Zhu S, Lu A, Liao Z, Sun Y, Xiao Q. Sulforaphane protects against skeletal muscle dysfunction in spontaneous type 2 diabetic db/db mice. Life Sci. 2020;255:117823.CrossRefPubMed
25.
go back to reference Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012;132(3):1121–32.CrossRefPubMed Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012;132(3):1121–32.CrossRefPubMed
26.
go back to reference Giuffre L, Romaniuk R, Ciarlo E. Stevia, ka’a he’e, wild sweet herb from South America-An overview. Emirates J Food Agric. 2013;25(10):746–50.CrossRef Giuffre L, Romaniuk R, Ciarlo E. Stevia, ka’a he’e, wild sweet herb from South America-An overview. Emirates J Food Agric. 2013;25(10):746–50.CrossRef
27.
go back to reference Brandle J, Starratt A, Gijzen M. Stevia rebaudiana: Its agricultural, biological, and chemical properties. Can J Plant Sci. 1998;78(4):527–36.CrossRef Brandle J, Starratt A, Gijzen M. Stevia rebaudiana: Its agricultural, biological, and chemical properties. Can J Plant Sci. 1998;78(4):527–36.CrossRef
28.
go back to reference Carakostas MC, Curry L, Boileau A, Brusick D. Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem Toxicol. 2008;46(7):S1–10.CrossRefPubMed Carakostas MC, Curry L, Boileau A, Brusick D. Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem Toxicol. 2008;46(7):S1–10.CrossRefPubMed
29.
go back to reference Chatsudthipong V, Muanprasat C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther. 2009;121(1):41–54.CrossRefPubMed Chatsudthipong V, Muanprasat C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther. 2009;121(1):41–54.CrossRefPubMed
30.
go back to reference Goyal S. Samsher n, Goyal R: Stevia (Stevia rebaudiana) a bio-sweetener: a review. Int J Food Sci Nutr. 2010;61(1):1–10.CrossRefPubMed Goyal S. Samsher n, Goyal R: Stevia (Stevia rebaudiana) a bio-sweetener: a review. Int J Food Sci Nutr. 2010;61(1):1–10.CrossRefPubMed
31.
go back to reference Atteh J, Onagbesan O, Tona K, Decuypere E, Geuns J, Buyse J. Evaluation of supplementary stevia (Stevia rebaudiana, bertoni) leaves and stevioside in broiler diets: effects on feed intake, nutrient metabolism, blood parameters and growth performance. J Anim Physiol Anim Nutr. 2008;92(6):640–9.CrossRef Atteh J, Onagbesan O, Tona K, Decuypere E, Geuns J, Buyse J. Evaluation of supplementary stevia (Stevia rebaudiana, bertoni) leaves and stevioside in broiler diets: effects on feed intake, nutrient metabolism, blood parameters and growth performance. J Anim Physiol Anim Nutr. 2008;92(6):640–9.CrossRef
32.
go back to reference Aghajanyan A, Movsisyan Z, Trchounian A. Antihyperglycemic and antihyperlipidemic activity of hydroponic stevia rebaudiana aqueous extract in hyperglycemia induced by immobilization stress in rabbits. BioMed Res Int. 2017;2017:9251358.PubMedCentralCrossRefPubMed Aghajanyan A, Movsisyan Z, Trchounian A. Antihyperglycemic and antihyperlipidemic activity of hydroponic stevia rebaudiana aqueous extract in hyperglycemia induced by immobilization stress in rabbits. BioMed Res Int. 2017;2017:9251358.PubMedCentralCrossRefPubMed
33.
go back to reference Jeppesen PB, Gregersen S, Alstrup K, Hermansen K. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine. 2002;9(1):9–14.CrossRefPubMed Jeppesen PB, Gregersen S, Alstrup K, Hermansen K. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine. 2002;9(1):9–14.CrossRefPubMed
34.
go back to reference Jeppesen P, Gregersen S, Rolfsen S, Jepsen M, Colombo M, Agger A, Xiao J, Kruhøffer M, Ørntoft T, Hermansen K. Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism. 2003;52(3):372–8.CrossRefPubMed Jeppesen P, Gregersen S, Rolfsen S, Jepsen M, Colombo M, Agger A, Xiao J, Kruhøffer M, Ørntoft T, Hermansen K. Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism. 2003;52(3):372–8.CrossRefPubMed
35.
go back to reference Shivanna N, Naika M, Khanum F, Kaul VK. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complications. 2013;27(2):103–13.CrossRefPubMed Shivanna N, Naika M, Khanum F, Kaul VK. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complications. 2013;27(2):103–13.CrossRefPubMed
36.
go back to reference Sehar I, Kaul A, Bani S, Pal HC, Saxena AK. Immune up regulatory response of a non-caloric natural sweetener, stevioside. Chem Biol Interact. 2008;173(2):115–21.CrossRefPubMed Sehar I, Kaul A, Bani S, Pal HC, Saxena AK. Immune up regulatory response of a non-caloric natural sweetener, stevioside. Chem Biol Interact. 2008;173(2):115–21.CrossRefPubMed
37.
go back to reference Takasaki M, Konoshima T, Kozuka M, Tokuda H, Takayasu J, Nishino H, Miyakoshi M, Mizutani K, Lee K-H. Cancer preventive agents. Part 8: chemopreventive effects of stevioside and related compounds. Bioorg Med Chem. 2009;17(2):600–5.CrossRefPubMed Takasaki M, Konoshima T, Kozuka M, Tokuda H, Takayasu J, Nishino H, Miyakoshi M, Mizutani K, Lee K-H. Cancer preventive agents. Part 8: chemopreventive effects of stevioside and related compounds. Bioorg Med Chem. 2009;17(2):600–5.CrossRefPubMed
38.
go back to reference Suzuki H, Kasai T, Sumihara M, Sugisawa H. Influence of oral administration of stevioside on levels of blood glucose and liver glycogen of intact rats. J Agric Chem Soc Japan. 1977;64:171–3. Suzuki H, Kasai T, Sumihara M, Sugisawa H. Influence of oral administration of stevioside on levels of blood glucose and liver glycogen of intact rats. J Agric Chem Soc Japan. 1977;64:171–3.
39.
go back to reference Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, More KJ, Breitbart RE. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84(3):491–5.CrossRefPubMed Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, More KJ, Breitbart RE. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84(3):491–5.CrossRefPubMed
40.
go back to reference Mokgalaboni K, Dludla PV, Mkandla Z, Mutize T, Nyambuya TM, Mxinwa V, et al. Differential expression of glycoprotein IV on monocyte subsets following high-fat diet feeding and the impact of short-term low-dose aspirin treatment. Metab Open. 2020;7:100047. Mokgalaboni K, Dludla PV, Mkandla Z, Mutize T, Nyambuya TM, Mxinwa V, et al. Differential expression of glycoprotein IV on monocyte subsets following high-fat diet feeding and the impact of short-term low-dose aspirin treatment. Metab Open. 2020;7:100047.
41.
go back to reference Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1(2):94–9.PubMedCentralCrossRefPubMed Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1(2):94–9.PubMedCentralCrossRefPubMed
42.
go back to reference Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95.CrossRefPubMed Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95.CrossRefPubMed
44.
go back to reference Maritim A, Sanders A, Watkins lii J. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Molec Toxicol. 2003;17(1):24–38.CrossRef Maritim A, Sanders A, Watkins lii J. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Molec Toxicol. 2003;17(1):24–38.CrossRef
45.
go back to reference Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev. 1998;14(4):263–83.CrossRefPubMed Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev. 1998;14(4):263–83.CrossRefPubMed
46.
go back to reference Bhushan MS, Rao C, Ojha S, Vijayakumar M, Verma A. An analytical review of plants for anti diabetic activity with their phytoconstituent & mechanism of action. Int J Pharm Sci Res. 2010;1(1):29–46. Bhushan MS, Rao C, Ojha S, Vijayakumar M, Verma A. An analytical review of plants for anti diabetic activity with their phytoconstituent & mechanism of action. Int J Pharm Sci Res. 2010;1(1):29–46.
47.
go back to reference Urban JD, Carakostas MC, Taylor SL. Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens? Food Chem Toxicol. 2015;75:71–8.CrossRefPubMed Urban JD, Carakostas MC, Taylor SL. Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens? Food Chem Toxicol. 2015;75:71–8.CrossRefPubMed
48.
go back to reference Planas GM, Kuć J. Contraceptive properties of Stevia rebaudiana. Science. 1968;162(3857):1007–1007.CrossRefPubMed Planas GM, Kuć J. Contraceptive properties of Stevia rebaudiana. Science. 1968;162(3857):1007–1007.CrossRefPubMed
49.
go back to reference Jeppesen PB, Gregersen S, Poulsen C, Hermansen K. Stevioside acts directly on pancreatic β cells to secrete insulin: Actions independent of cyclic adenosine monophosphate and adenosine triphosphate—sensitivie K+-channel activity. Metabolism. 2000;49(2):208–14.CrossRefPubMed Jeppesen PB, Gregersen S, Poulsen C, Hermansen K. Stevioside acts directly on pancreatic β cells to secrete insulin: Actions independent of cyclic adenosine monophosphate and adenosine triphosphate—sensitivie K+-channel activity. Metabolism. 2000;49(2):208–14.CrossRefPubMed
50.
go back to reference Geuns JM. Safety evaluation of Stevia and stevioside. Stud Nat Prod Chem. 2002;27:299–319.CrossRef Geuns JM. Safety evaluation of Stevia and stevioside. Stud Nat Prod Chem. 2002;27:299–319.CrossRef
51.
go back to reference Nagy C, Einwallner E. Study of in vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). J Vis Exp. 2018;131:e56672. Nagy C, Einwallner E. Study of in vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). J Vis Exp. 2018;131:e56672.
52.
go back to reference Wallace T, Matthews D. The assessment of insulin resistance in man. Diabet Med. 2002;19(7):527–34.CrossRefPubMed Wallace T, Matthews D. The assessment of insulin resistance in man. Diabet Med. 2002;19(7):527–34.CrossRefPubMed
53.
go back to reference Kang MJ, Moon JW, Lee JO, Kim JH, Jung EJ, Kim SJ, Oh JY, Wu SW, Lee PR, Park SH. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a. J Cachexia Sarcopenia Muscle. 2022;13(1):605–20.CrossRefPubMed Kang MJ, Moon JW, Lee JO, Kim JH, Jung EJ, Kim SJ, Oh JY, Wu SW, Lee PR, Park SH. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a. J Cachexia Sarcopenia Muscle. 2022;13(1):605–20.CrossRefPubMed
54.
go back to reference Karlsson HK, Zierath JR. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys. 2007;48:103–13.CrossRefPubMed Karlsson HK, Zierath JR. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys. 2007;48:103–13.CrossRefPubMed
55.
go back to reference Deenadayalan A, Subramanian V, Paramasivan V, Veeraraghavan VP, Rengasamy G, Coiambatore Sadagopan J, Rajagopal P, Jayaraman S. Stevioside attenuates insulin resistance in skeletal muscle by facilitating IR/IRS-1/Akt/GLUT 4 signaling pathways: an in vivo and in silico approach. Molecules. 2021;26(24):7689.PubMedCentralCrossRefPubMed Deenadayalan A, Subramanian V, Paramasivan V, Veeraraghavan VP, Rengasamy G, Coiambatore Sadagopan J, Rajagopal P, Jayaraman S. Stevioside attenuates insulin resistance in skeletal muscle by facilitating IR/IRS-1/Akt/GLUT 4 signaling pathways: an in vivo and in silico approach. Molecules. 2021;26(24):7689.PubMedCentralCrossRefPubMed
56.
go back to reference Volpato S, Bianchi L, Lauretani F, Lauretani F, Bandinelli S, Guralnik JM, Zuliani G, Ferrucci L. Role of muscle mass and muscle quality in the association between diabetes and gait speed. Diabetes Care. 2012;35(8):1672–9.PubMedCentralCrossRefPubMed Volpato S, Bianchi L, Lauretani F, Lauretani F, Bandinelli S, Guralnik JM, Zuliani G, Ferrucci L. Role of muscle mass and muscle quality in the association between diabetes and gait speed. Diabetes Care. 2012;35(8):1672–9.PubMedCentralCrossRefPubMed
57.
go back to reference Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol. 2016;229(2):R67–81.CrossRefPubMed Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol. 2016;229(2):R67–81.CrossRefPubMed
58.
go back to reference Camporez J-PG, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G, Haqq CM, Petersen KF, Shulman GI. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci. 2016;113(8):2212–7.PubMedCentralCrossRefPubMed Camporez J-PG, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G, Haqq CM, Petersen KF, Shulman GI. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci. 2016;113(8):2212–7.PubMedCentralCrossRefPubMed
59.
go back to reference Wang X, Hu Z, Hu J, Du J, Mitch WE. Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology. 2006;147(9):4160–8.CrossRefPubMed Wang X, Hu Z, Hu J, Du J, Mitch WE. Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology. 2006;147(9):4160–8.CrossRefPubMed
60.
go back to reference Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 2015;4(1):R1.CrossRefPubMed Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 2015;4(1):R1.CrossRefPubMed
61.
go back to reference Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 2005;54(1):8–14.CrossRefPubMed Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 2005;54(1):8–14.CrossRefPubMed
62.
go back to reference Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Investig. 2000;106(7):847–56.PubMedCentralCrossRefPubMed Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Investig. 2000;106(7):847–56.PubMedCentralCrossRefPubMed
63.
go back to reference Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 2007;26(7):1913–23.PubMedCentralCrossRefPubMed Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 2007;26(7):1913–23.PubMedCentralCrossRefPubMed
64.
go back to reference Ørtenblad N, Mogensen M, Petersen I, Højlund K, Levin K, Sahlin K, Becknielsen H, Gaster M. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim Biophys. 2005;1741(1–2):206–14.CrossRef Ørtenblad N, Mogensen M, Petersen I, Højlund K, Levin K, Sahlin K, Becknielsen H, Gaster M. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim Biophys. 2005;1741(1–2):206–14.CrossRef
66.
go back to reference Geeraert B, Crombe F, Hulsmans M, Benhabiles N, Geuns J, Holvoet P. Stevioside inhibits atherosclerosis by improving insulin signaling and antioxidant defense in obese insulin-resistant mice. Int J Obes. 2010;34(3):569–77.CrossRef Geeraert B, Crombe F, Hulsmans M, Benhabiles N, Geuns J, Holvoet P. Stevioside inhibits atherosclerosis by improving insulin signaling and antioxidant defense in obese insulin-resistant mice. Int J Obes. 2010;34(3):569–77.CrossRef
67.
go back to reference Kim I-S, Yang M, Lee O-H, Kang S-N. The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT Food Sci Technol. 2011;44(5):1328–32.CrossRef Kim I-S, Yang M, Lee O-H, Kang S-N. The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT Food Sci Technol. 2011;44(5):1328–32.CrossRef
68.
69.
go back to reference Anton SD, Martin CK, Han H, Coulon S, Cefalu WT, Geiselman P, Williamson DA. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite. 2010;55(1):37–43.PubMedCentralCrossRefPubMed Anton SD, Martin CK, Han H, Coulon S, Cefalu WT, Geiselman P, Williamson DA. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite. 2010;55(1):37–43.PubMedCentralCrossRefPubMed
70.
go back to reference Curi R, Alvarez M, Bazotte RB, Botion L, Godoy J, Bracht A. Effect of Stevia rebaudiana on glucose tolerance in normal adult humans. Braz J Med Biol Res. 1986;19(6):771–4.PubMed Curi R, Alvarez M, Bazotte RB, Botion L, Godoy J, Bracht A. Effect of Stevia rebaudiana on glucose tolerance in normal adult humans. Braz J Med Biol Res. 1986;19(6):771–4.PubMed
71.
go back to reference Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism. 2004;53(1):73–6.CrossRefPubMed Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism. 2004;53(1):73–6.CrossRefPubMed
Metadata
Title
Stevia (Stevia rebaudiana) extract ameliorates insulin resistance by regulating mitochondrial function and oxidative stress in the skeletal muscle of db/db mice
Authors
Jin-Young Han
Miey Park
Hae-Jeung Lee
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04033-5

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue