Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

In vitro toxicity determination of antifungal constituents from Combretum zeyheri

Authors: Santana Mapfunde, Simbarashe Sithole, Stanley Mukanganyama

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Candida albicans is one of the organisms living on the human body symbiotically, but, in hosts with low immunity it becomes one of the most pathogenic fungal organisms. Combretum zeyheri has been reported to have antifungal, antibacterial and antioxidant activities. Medicinal plants are believed to be non-toxic by the general public. Toxicity studies, however, have indicated that they are capable of causing numerous side effects, therefore, evaluation of safety is required. The objective of this study was to determine the toxicity of the antifungal constituents of Combretum zeyheri on mammalian cells.

Methods

Alkaloids, saponins, flavonoids-enriched extracts and crude ethanol extracts were prepared from the leaves of Combretum zeyheri. The broth microdilution method was used to investigate for antifungal activity, with miconazole used as the positive control. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to determine cell viability of the Candida albicans cells. The most potent extracts; the ethanol extract, alkaloids and saponins respectively, were further tested for their toxicity on sheep erythrocytes, mouse peritoneal macrophages and Jurkat T cells.

Results

All Combretum zeyheri extracts displayed a dose-dependent antifungal activity and had IC50 values ranging from 16 μg/ml to 159 μg/ml for Candida albicans. The alkaloids, saponins and ethanol extracts were found to be non-toxic towards mouse peritoneal cells and Jurkat T cells. In the haemolysis assay, all extracts were haemolytic at varying degrees and showed their greatest haemolytic activity at the highest concentration of 5 mg/ml. The saponins were the least haemolytic, followed by the ethanol extracts and the alkaloids respectively. Although these extracts were haemolytic to some extent, they may considered safe at therapeutic concentrations since there was a large difference between the antifungal IC50 and haemolysis EC50 values, hence a large therapeutic window.

Conclusions

Combretum zeyheri antifungal constituents are, therefore, a potential source of lead compounds which can be developed into antifungal drugs of natural origin owing to Combretum zeyheri’s effective antifungal activity and low toxicity to mammalian cells.
Literature
1.
go back to reference Amrouche A, Benmehdi H, Chabane SD, Bouras S, Cherfaoni N, Hoggan K. Phytochemical screening and antifungal activity of saponins extracted from Algerian Silene hoggariensis quezel. Int Res J Pharma. 2014;5:751–6.CrossRef Amrouche A, Benmehdi H, Chabane SD, Bouras S, Cherfaoni N, Hoggan K. Phytochemical screening and antifungal activity of saponins extracted from Algerian Silene hoggariensis quezel. Int Res J Pharma. 2014;5:751–6.CrossRef
2.
go back to reference Dhamgaye S, Devoux F, Vandeputte P, Khandelwal K, Sanglard D, Mukhopadhyay G, Prasad R. Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans. Public Library Sci One. 2014;9:104554. Dhamgaye S, Devoux F, Vandeputte P, Khandelwal K, Sanglard D, Mukhopadhyay G, Prasad R. Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans. Public Library Sci One. 2014;9:104554.
3.
go back to reference Singlara D, Kuchler K, Ischer F, Pagani JL, Munod M, Bille J. Mechanisms in resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporter. Antimicrob Agents Chemother. 1995;39:2378–86.CrossRef Singlara D, Kuchler K, Ischer F, Pagani JL, Munod M, Bille J. Mechanisms in resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporter. Antimicrob Agents Chemother. 1995;39:2378–86.CrossRef
4.
go back to reference Masengu C, Zimba F, Mangoyi R, Mukanganyama S. Inhibitory activity of Combretum zeyheri and its S9 metabolites against Escherichia coli, Bacillus subtilis and Candida albicans. J Microbial Biochem Technol. 2014;6:28–235.CrossRef Masengu C, Zimba F, Mangoyi R, Mukanganyama S. Inhibitory activity of Combretum zeyheri and its S9 metabolites against Escherichia coli, Bacillus subtilis and Candida albicans. J Microbial Biochem Technol. 2014;6:28–235.CrossRef
5.
go back to reference Masoko P, Eloff JN. Bioautography indicates the multiplicity of antifungal compounds from 24 Southern African Combretum species (Combretaceae). Afr J Biotechnol. 2006;5:1625–47. Masoko P, Eloff JN. Bioautography indicates the multiplicity of antifungal compounds from 24 Southern African Combretum species (Combretaceae). Afr J Biotechnol. 2006;5:1625–47.
6.
go back to reference Hilmi V, Abushama MF, Abdalgadir H, Khalid A, Khalid H. A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional Sudanese plants with antidiabetic potential. Compl Alternat Med. 2014;14:149–56.CrossRef Hilmi V, Abushama MF, Abdalgadir H, Khalid A, Khalid H. A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional Sudanese plants with antidiabetic potential. Compl Alternat Med. 2014;14:149–56.CrossRef
7.
go back to reference Mangoyi R, Mafukidze W, Marobela K, Mukanganyama S. Antifungal activities and preliminary phytochemical investigation of Combretum species in Zimbabwe. Microbial Biochem Technol. 2012;4:037–44. Mangoyi R, Mafukidze W, Marobela K, Mukanganyama S. Antifungal activities and preliminary phytochemical investigation of Combretum species in Zimbabwe. Microbial Biochem Technol. 2012;4:037–44.
8.
go back to reference Lahlou M. The success of natural products in drug discovery. Pharmacol Pharma. 2013;4:17–31.CrossRef Lahlou M. The success of natural products in drug discovery. Pharmacol Pharma. 2013;4:17–31.CrossRef
9.
go back to reference Agra MF, Freitas PF, Barbosa FJM. Synopsis of the plants known as medicinal and poisonous in Northeast Brazil. Braz Pharmacogn. 2007;17:114–40.CrossRef Agra MF, Freitas PF, Barbosa FJM. Synopsis of the plants known as medicinal and poisonous in Northeast Brazil. Braz Pharmacogn. 2007;17:114–40.CrossRef
10.
go back to reference Mutasa T, Mangoyi R, Mukanganyama S. The effects of Combretum zeyheri leaf extract on ergosterol synthesis in Candida albicans. J Herbs Spices Med Plants. 2014;21:211–7.CrossRef Mutasa T, Mangoyi R, Mukanganyama S. The effects of Combretum zeyheri leaf extract on ergosterol synthesis in Candida albicans. J Herbs Spices Med Plants. 2014;21:211–7.CrossRef
11.
go back to reference Yadav NK, Saini KS, Hossain Z, Omer A, Sharma C, Gayen JR, Singh P, Arya KR, Singh RK. Saraca indica bark extract shows in vitro antioxidant, antibreast cancer activity and does not exhibit toxicological effects. Oxid Med Cell Longev. 2015;2015:205360. doi:10.1155/2015/205360.CrossRefPubMedPubMedCentral Yadav NK, Saini KS, Hossain Z, Omer A, Sharma C, Gayen JR, Singh P, Arya KR, Singh RK. Saraca indica bark extract shows in vitro antioxidant, antibreast cancer activity and does not exhibit toxicological effects. Oxid Med Cell Longev. 2015;2015:205360. doi:10.​1155/​2015/​205360.CrossRefPubMedPubMedCentral
12.
go back to reference Steenkamp V, Moekele TL, Van Rensburg CES. Toxicity in two medicinal plants, Bridelia micrantha and Ontidesma venosum. Open Toxicol J. 2009;3:35–8.CrossRef Steenkamp V, Moekele TL, Van Rensburg CES. Toxicity in two medicinal plants, Bridelia micrantha and Ontidesma venosum. Open Toxicol J. 2009;3:35–8.CrossRef
13.
go back to reference Noudeh DG, Sharififar F, Khatib M, Behravan E, Afzadi MA. Study of aqueous extract of three medicinal plants on cell membrane–permeabilizing and their surface properties. Afr J Biotechnol. 2010;9:110–6. Noudeh DG, Sharififar F, Khatib M, Behravan E, Afzadi MA. Study of aqueous extract of three medicinal plants on cell membrane–permeabilizing and their surface properties. Afr J Biotechnol. 2010;9:110–6.
14.
go back to reference Hostettmann K, Marston A, Ndjoko K, Wolfender J-L. The potential of African plants as sources of drugs. Curr Org Chem. 2000;4:973–1010.CrossRef Hostettmann K, Marston A, Ndjoko K, Wolfender J-L. The potential of African plants as sources of drugs. Curr Org Chem. 2000;4:973–1010.CrossRef
15.
go back to reference Eloff JN, McGaw LJ. Using African Plant Biodiversity to combat microbial infections. Chapter 12. In: Gurib-Fakim A, editor. Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics. 1st ed. Hoboken: Wiley; 2014. p. 163–78.CrossRef Eloff JN, McGaw LJ. Using African Plant Biodiversity to combat microbial infections. Chapter 12. In: Gurib-Fakim A, editor. Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics. 1st ed. Hoboken: Wiley; 2014. p. 163–78.CrossRef
16.
go back to reference Ray A, Dittel BN. Isolation of Mouse Peritoneal Cavity Cells. J Visual Experiment. 2010;35:e1488. doi:10.3791/1488. Ray A, Dittel BN. Isolation of Mouse Peritoneal Cavity Cells. J Visual Experiment. 2010;35:e1488. doi:10.​3791/​1488.
17.
go back to reference Mahmoudvant H, Mousavi SAA, Sepahvand A, Sharififar F, Ezatpour B, Gorohi F, Dezaki ES, Jahanbakhsh S. Antifungal, Antileishmanial, and Cytotoxicity activities of various extracts of Berberis vulgaris (Berberidaceae) and its active principle berberine. Pharmacology. 2014;2014:1–6. Mahmoudvant H, Mousavi SAA, Sepahvand A, Sharififar F, Ezatpour B, Gorohi F, Dezaki ES, Jahanbakhsh S. Antifungal, Antileishmanial, and Cytotoxicity activities of various extracts of Berberis vulgaris (Berberidaceae) and its active principle berberine. Pharmacology. 2014;2014:1–6.
18.
go back to reference Runyoro DKB, Srivastava SK, Darolar MP, Olipa ND, Josef CC, Male MIN. Anticandidiasis agents from a Tanzanian plant Combretum zeyheri. Med Chem Res. 2012;22:1258–62.CrossRef Runyoro DKB, Srivastava SK, Darolar MP, Olipa ND, Josef CC, Male MIN. Anticandidiasis agents from a Tanzanian plant Combretum zeyheri. Med Chem Res. 2012;22:1258–62.CrossRef
19.
go back to reference Mangoyi R, Mukanganyama S. In vitro antifungal activities of selected medicinal plants from Zimbabwe against Candida albicans and Candida krusei. Afr J Plant Sci Biotechnol. 2011;5:8–14. Mangoyi R, Mukanganyama S. In vitro antifungal activities of selected medicinal plants from Zimbabwe against Candida albicans and Candida krusei. Afr J Plant Sci Biotechnol. 2011;5:8–14.
21.
go back to reference Dellavalle PD, Cabrera A, Alem D, Larrañaga P, Ferreira F, Rizza MD. Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternarias spp. Chilean J Agri Res. 2011;71:231–9.CrossRef Dellavalle PD, Cabrera A, Alem D, Larrañaga P, Ferreira F, Rizza MD. Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternarias spp. Chilean J Agri Res. 2011;71:231–9.CrossRef
22.
go back to reference Costa L, Birman EG, Alves SH, Cury AE. Antifungal susceptibility of Candida albicans isolated from oral mucosa of patients with cancer. Odontol Univ São Paulo. 1999;13:219–23.CrossRef Costa L, Birman EG, Alves SH, Cury AE. Antifungal susceptibility of Candida albicans isolated from oral mucosa of patients with cancer. Odontol Univ São Paulo. 1999;13:219–23.CrossRef
23.
go back to reference Hazen CK. Influence of DMSO on antifungal activity during susceptibility testing in vitro. Diagn Microbiol Infect Dis. 2013;75:60–3.CrossRefPubMed Hazen CK. Influence of DMSO on antifungal activity during susceptibility testing in vitro. Diagn Microbiol Infect Dis. 2013;75:60–3.CrossRefPubMed
24.
go back to reference Paiva AD, Oliveira M, Paula S, Baracat-Pereira MC, Breukink E, Mantovani HC. Toxicity of Bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology. 2012;158:2851–8.CrossRefPubMed Paiva AD, Oliveira M, Paula S, Baracat-Pereira MC, Breukink E, Mantovani HC. Toxicity of Bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology. 2012;158:2851–8.CrossRefPubMed
25.
go back to reference Orsine JVC, da Costa RV, da Silva RC, Santos MMA, Novaes MRCG. The acute cytotoxicity and lethal concentration (LC50) of Agaricus sylvaticus through hemolytic activity on human erythrocyte. Int J Nutr Metabol. 2012;4:19–23. Orsine JVC, da Costa RV, da Silva RC, Santos MMA, Novaes MRCG. The acute cytotoxicity and lethal concentration (LC50) of Agaricus sylvaticus through hemolytic activity on human erythrocyte. Int J Nutr Metabol. 2012;4:19–23.
26.
go back to reference Mohammedi Z, Atik F. Haemolytic activity of different herbal extracts used in Algeria. Int J Pharm Sci Res. 2014;5:495–500.CrossRef Mohammedi Z, Atik F. Haemolytic activity of different herbal extracts used in Algeria. Int J Pharm Sci Res. 2014;5:495–500.CrossRef
27.
go back to reference Inalgwu B, Sodipo OA. Phytochemical screening and haemolytic activities of crude and purified saponins of aqueous and methalonic extracts of leaves of Tephrosia Vagelii Hook. F. Asian J Plant Sci Res. 2013;3:7–11. Inalgwu B, Sodipo OA. Phytochemical screening and haemolytic activities of crude and purified saponins of aqueous and methalonic extracts of leaves of Tephrosia Vagelii Hook. F. Asian J Plant Sci Res. 2013;3:7–11.
28.
go back to reference Cherian PT, Wu X, Maddox MM, Singh AP, Lee RE, Hurdle JG. Chemical modulation of the biological activity of reutericyclin: a membrane active antibiotic from Lactobacillus reuteri. Sci Rep. 2014;4:4721.CrossRefPubMedPubMedCentral Cherian PT, Wu X, Maddox MM, Singh AP, Lee RE, Hurdle JG. Chemical modulation of the biological activity of reutericyclin: a membrane active antibiotic from Lactobacillus reuteri. Sci Rep. 2014;4:4721.CrossRefPubMedPubMedCentral
29.
go back to reference Chan-Ho L, Kim J, Kim H, Park S, Lee S. Immunomodulating effects of Korean mistletoe lectin in vitro and in vivo. Int Immunopharmacol. 2009;9:555–1561. Chan-Ho L, Kim J, Kim H, Park S, Lee S. Immunomodulating effects of Korean mistletoe lectin in vitro and in vivo. Int Immunopharmacol. 2009;9:555–1561.
30.
go back to reference Goodacre RL, Clancy RL, Davidson RA, Mullens JE. Cell mediated immunity to corn starch in starch-induced granulomatous peritonitis. Gut. 1976;17:202–5.CrossRefPubMedPubMedCentral Goodacre RL, Clancy RL, Davidson RA, Mullens JE. Cell mediated immunity to corn starch in starch-induced granulomatous peritonitis. Gut. 1976;17:202–5.CrossRefPubMedPubMedCentral
31.
go back to reference Bukowski JF, Monta CT, Brenner MB. Human γδ T cells recognize alkylamines derived from microbes, edible plants, and tea. Immunity. 1999;11:57–65.CrossRefPubMed Bukowski JF, Monta CT, Brenner MB. Human γδ T cells recognize alkylamines derived from microbes, edible plants, and tea. Immunity. 1999;11:57–65.CrossRefPubMed
32.
go back to reference Lee C, Kim J, Kim H, Park S, Lee S. Immunomodulatory effects of Korean mistletoe lectin in vitro and in vivo. Int Immunopharmacol. 2009;9:1555–61.CrossRefPubMed Lee C, Kim J, Kim H, Park S, Lee S. Immunomodulatory effects of Korean mistletoe lectin in vitro and in vivo. Int Immunopharmacol. 2009;9:1555–61.CrossRefPubMed
33.
go back to reference Singh A, Shuklan Y. Antitumor activity of diallylsulfide in two stage mouse skin model of carcinogenesis. Biomed Environ Sci. 1998;11:258.PubMed Singh A, Shuklan Y. Antitumor activity of diallylsulfide in two stage mouse skin model of carcinogenesis. Biomed Environ Sci. 1998;11:258.PubMed
34.
go back to reference Chopra RN, Chopra IC, Handa KL, Kapur LD. Indigenous Drugs of India. Calcutta: UN Dhur and Sons Private Ltd; 1958. Chopra RN, Chopra IC, Handa KL, Kapur LD. Indigenous Drugs of India. Calcutta: UN Dhur and Sons Private Ltd; 1958.
35.
go back to reference Gul MZ, Ahmad F, Kondapi AK, Qureshi AI, Irfan G. Antioxidant and antiploriferative activities of Abrus precarious leaf extract – an in vitro study. BMC Complement Altern Med. 2013;13:53.CrossRefPubMedPubMedCentral Gul MZ, Ahmad F, Kondapi AK, Qureshi AI, Irfan G. Antioxidant and antiploriferative activities of Abrus precarious leaf extract – an in vitro study. BMC Complement Altern Med. 2013;13:53.CrossRefPubMedPubMedCentral
36.
go back to reference Schneider U, Schwenk HU, Bomkaman G. Characterization of EBV genome negative “null” Nd “T” cell lines derived from children with acute lymphoblastomic leukemic transformed non-Hodgkins lymphoma. Int J Cancer. 1977;19:621–6.CrossRefPubMed Schneider U, Schwenk HU, Bomkaman G. Characterization of EBV genome negative “null” Nd “T” cell lines derived from children with acute lymphoblastomic leukemic transformed non-Hodgkins lymphoma. Int J Cancer. 1977;19:621–6.CrossRefPubMed
37.
go back to reference Flickinger MC. Upstream Industrial Biotechnology, 2. Hoboken: Wiley; 2013. Flickinger MC. Upstream Industrial Biotechnology, 2. Hoboken: Wiley; 2013.
38.
go back to reference Ting KN, Othman M, Telford G, Clarke G, Bradshaw TD, Khoo TJ, Lons HS, Wiart W, Pritchard D, Fry JR. Antioxidant, cytoprotective, growth inhibitory and immunomodulatory activities of Dysotylum cauliflorum hierm, a Malaysian Melicaea. J Med Plants Res. 2011;5:5867–72. Ting KN, Othman M, Telford G, Clarke G, Bradshaw TD, Khoo TJ, Lons HS, Wiart W, Pritchard D, Fry JR. Antioxidant, cytoprotective, growth inhibitory and immunomodulatory activities of Dysotylum cauliflorum hierm, a Malaysian Melicaea. J Med Plants Res. 2011;5:5867–72.
39.
go back to reference Mozonte L, Pinon A, Selzer WN. Antileishmanial potential of tropical rainforest extracts. Medicines. 2014;1:32–55.CrossRef Mozonte L, Pinon A, Selzer WN. Antileishmanial potential of tropical rainforest extracts. Medicines. 2014;1:32–55.CrossRef
Metadata
Title
In vitro toxicity determination of antifungal constituents from Combretum zeyheri
Authors
Santana Mapfunde
Simbarashe Sithole
Stanley Mukanganyama
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1150-9

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue