Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Antimalarial activity of 80 % methanolic extract of Brassica nigra (L.) Koch. (Brassicaceae) seeds against Plasmodium berghei infection in mice

Authors: Abrham Belachew Muluye, Eshetie Melese, Getnet Mequanint Adinew

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Resistances to currently available drugs and insecticides, significant drug toxicities and costs and lack of vaccines currently complicated the treatment of malaria. A continued search for safe, effective and affordable plant-based antimalarial agents thus becomes crucial and vital in the face of these difficulties. The aim of the study was to evaluate the antimalarial activity of 80 % methanolic extract of the seeds of Brassica nigra against Plasmodium berghei infection in mice.

Method

Chloroquine sensitive Plasmodium berghei (ANKA strain) was used to test the antimalarial activity of the extract. In suppressive and prophylactic models, Swiss albino male mice were randomly grouped into five groups of five mice each. Group I mice were treated with the vehicle, group II, III and IV were treated with 100, 200, and 400 mg/kg of the extract, respectively and the last group (V) mice were treated with chloroquine (10 mg/kg). The level of parasitemia, survival time and variation in weight of mice were used to determine the antimalarial activity of the extract.

Results

Chemosuppressive activities produced by the extract of the seeds of Brassica nigra were 21.88, 50.00 (P < 0.01) and 53.13 % (P < 0.01), while the chemoprophylactic activities were 17.42, 21.21 and 53.79 % (P < 0.05) at 100, 200 and 400 mg/kg of the extract, respectively as compared to the negative control. Mice treated with 200 and 400 mg/kg extract were significantly (P < 0.05) lived longer and gained weight as compared to negative control in 4-day suppressive test.

Conclusion

From this study, it can be concluded that the seed extract of Brassica nigra showed good chemosuppressive and moderate chemoprophylactic activities and the plant may contain biologically active principles which are relevant in the treatment and prophylaxis of malaria, thus supporting further studies of the plant for its active components.
Literature
2.
go back to reference Silva JRA, Ramos AS, Machado M, deMoura DF, Neto Z, Canto-Cavalheir MM, et al. A Review of Antimalarial Plants Used in Traditional Medicine in Communities in Portuguese-Speaking Countries: Brazil, Mozambique, Cape Verde, Guinea-Bissau, São Tomé and Príncipe and Angola. Mem Inst Oswaldo Cruz. 2011;106:142–58.CrossRefPubMed Silva JRA, Ramos AS, Machado M, deMoura DF, Neto Z, Canto-Cavalheir MM, et al. A Review of Antimalarial Plants Used in Traditional Medicine in Communities in Portuguese-Speaking Countries: Brazil, Mozambique, Cape Verde, Guinea-Bissau, São Tomé and Príncipe and Angola. Mem Inst Oswaldo Cruz. 2011;106:142–58.CrossRefPubMed
4.
go back to reference Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to Malaria: More Questions than Answers. Nat Immunol. 2008;9:725–32.CrossRefPubMed Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to Malaria: More Questions than Answers. Nat Immunol. 2008;9:725–32.CrossRefPubMed
5.
go back to reference Sullivan JDJ, Kaludov N, Martinov MN. Discovery of Potent, Novel, Non-Toxic Antimalarial Compounds via Quantum Modelling, Virtual Screening and In Vitro Experimental Validation. Malar J. 2011;10:274–82.PubMedCentralCrossRefPubMed Sullivan JDJ, Kaludov N, Martinov MN. Discovery of Potent, Novel, Non-Toxic Antimalarial Compounds via Quantum Modelling, Virtual Screening and In Vitro Experimental Validation. Malar J. 2011;10:274–82.PubMedCentralCrossRefPubMed
6.
go back to reference Folashade KO, Omoregie EH, Ochogu AP. Standardization of Herbal Medicines - A Review. Int J Biodvers Conserv. 2012;4:101–12. Folashade KO, Omoregie EH, Ochogu AP. Standardization of Herbal Medicines - A Review. Int J Biodvers Conserv. 2012;4:101–12.
7.
go back to reference Pandey A, Tripathi S. Concept of Standardization, Extraction and Pre-Phytochemical Screening Strategies for Herbal Drug. J Pharmacogn Phytochem. 2014;2:115–9. Pandey A, Tripathi S. Concept of Standardization, Extraction and Pre-Phytochemical Screening Strategies for Herbal Drug. J Pharmacogn Phytochem. 2014;2:115–9.
8.
go back to reference Onguéné PA, Ntie-Kang F, Lifongo LL, Ndom JC, Sippl W, Mbaze LM. The Potential of Antimalarial Compounds Derived from African Medicinal Plants. Part I: A Pharmacological Evaluation of Alkaloids and Terpenoids. Malar J. 2013;12:449–74.CrossRef Onguéné PA, Ntie-Kang F, Lifongo LL, Ndom JC, Sippl W, Mbaze LM. The Potential of Antimalarial Compounds Derived from African Medicinal Plants. Part I: A Pharmacological Evaluation of Alkaloids and Terpenoids. Malar J. 2013;12:449–74.CrossRef
10.
go back to reference Bero J, Frederich M, Quetin-Leclercq J. Antimalarial Compounds Isolated from Plants Used in Traditional Medicine. J Pharm Pharmacol. 2009;61:1401–33.CrossRefPubMed Bero J, Frederich M, Quetin-Leclercq J. Antimalarial Compounds Isolated from Plants Used in Traditional Medicine. J Pharm Pharmacol. 2009;61:1401–33.CrossRefPubMed
11.
go back to reference Jonsell B. Brassicaceae. In: Hedberg I, Edwards S, Tadesse M, Demissew S, editors. Flora of Ethiopia and Eritrea. Vol. 2, part 1. Ethiopia: National Herbarium; 2000. p. 121–54. Jonsell B. Brassicaceae. In: Hedberg I, Edwards S, Tadesse M, Demissew S, editors. Flora of Ethiopia and Eritrea. Vol. 2, part 1. Ethiopia: National Herbarium; 2000. p. 121–54.
12.
go back to reference Amri E. The Role of Selected Plant Families with Dietary Ethnomedicinal Species Used as Anticancer. J Med Plants Stud. 2014;2:28–39. Amri E. The Role of Selected Plant Families with Dietary Ethnomedicinal Species Used as Anticancer. J Med Plants Stud. 2014;2:28–39.
14.
go back to reference Endale A. Ethnobotanical Study of Antimalarial Plants in Dembia District, North Gondar, Amhara Region, Northwest Ethiopia. Biochem Pharmacol. 2013;2:180. Endale A. Ethnobotanical Study of Antimalarial Plants in Dembia District, North Gondar, Amhara Region, Northwest Ethiopia. Biochem Pharmacol. 2013;2:180.
15.
go back to reference Ghafari S, Esmaeili S, Naghibi F, Mosaddegh M. Plants Used to Treat Malaria Like Fever in Iranian Traditional Medicine. Intl J Trad Herb Med. 2013;1:168–76. Ghafari S, Esmaeili S, Naghibi F, Mosaddegh M. Plants Used to Treat Malaria Like Fever in Iranian Traditional Medicine. Intl J Trad Herb Med. 2013;1:168–76.
16.
go back to reference Praveen KU, Naga PK, Murali KB, Swarnalatha M. Evaluation of Antiepileptic Activity of Methanolic Extract of Brassica nigra Seeds in Mice. IJPI. 2013;3:73–84. Praveen KU, Naga PK, Murali KB, Swarnalatha M. Evaluation of Antiepileptic Activity of Methanolic Extract of Brassica nigra Seeds in Mice. IJPI. 2013;3:73–84.
17.
go back to reference Tomar RS, Shrivastava V. Efficacy Evaluation of Ethanolic Extract of Brassica nigra as Potential Antimicrobial Agent against Selected Microorganisms. IJPHC. 2014;3:117–23. Tomar RS, Shrivastava V. Efficacy Evaluation of Ethanolic Extract of Brassica nigra as Potential Antimicrobial Agent against Selected Microorganisms. IJPHC. 2014;3:117–23.
18.
go back to reference Shafaghat A. Phytochemical Investigation of Quranic Fruits and Plants. J Med Plants Res. 2010;9:61–6. Shafaghat A. Phytochemical Investigation of Quranic Fruits and Plants. J Med Plants Res. 2010;9:61–6.
19.
go back to reference Cannell RJP. Natural Products Isolation. In: Sarker SD, Latif Z, Gray AI, editors. Methods in Biotechnology. 2nd ed. New Jersey: Humana Press Inc; 2006. Cannell RJP. Natural Products Isolation. In: Sarker SD, Latif Z, Gray AI, editors. Methods in Biotechnology. 2nd ed. New Jersey: Humana Press Inc; 2006.
20.
go back to reference Institute for Laboratory Animal Research (ILAR). Guide for the Care and Use of Laboratory Animals. 8th ed. Washington DC: National Academic Press; 2011. Institute for Laboratory Animal Research (ILAR). Guide for the Care and Use of Laboratory Animals. 8th ed. Washington DC: National Academic Press; 2011.
21.
go back to reference Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial Drug Discovery: Efficacy Models for Compound Screening. Nat Rev Drug Discov. 2004;3:509–20.CrossRefPubMed Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial Drug Discovery: Efficacy Models for Compound Screening. Nat Rev Drug Discov. 2004;3:509–20.CrossRefPubMed
22.
go back to reference Basir R, Fazalul Rahiman SS, Hasballah K, Chong WC, Talib H, Yam MF, et al. Plasmodium berghei ANKA Infection in ICR Mice as a Model of Cerebral Malaria. Iranian J Parasitol. 2012;7:62–74. Basir R, Fazalul Rahiman SS, Hasballah K, Chong WC, Talib H, Yam MF, et al. Plasmodium berghei ANKA Infection in ICR Mice as a Model of Cerebral Malaria. Iranian J Parasitol. 2012;7:62–74.
24.
go back to reference Kalra BS, Chawla S, Gupta P, Valecha N. Screening of Antimalarial Drugs: An Overview. Indian J Pharmacol. 2006;38:5–12.CrossRef Kalra BS, Chawla S, Gupta P, Valecha N. Screening of Antimalarial Drugs: An Overview. Indian J Pharmacol. 2006;38:5–12.CrossRef
25.
go back to reference Oliveira AB, Dolabela MF, Braga FC, Jácome RLRP, Varotti FP, Póvoa MM. Plant-Derived Antimalarial Agents: New Leads and Efficient Phythomedicines. Part I. Alkaloids. An Acad Bras Cienc. 2009;81:715–40.CrossRefPubMed Oliveira AB, Dolabela MF, Braga FC, Jácome RLRP, Varotti FP, Póvoa MM. Plant-Derived Antimalarial Agents: New Leads and Efficient Phythomedicines. Part I. Alkaloids. An Acad Bras Cienc. 2009;81:715–40.CrossRefPubMed
26.
go back to reference Krettli AU, Adebayo JO, Krettli LG. Testing of Natural Products and Synthetic Molecules Aiming at New Antimalarials. Curr Drug Targets. 2009;10:261–70.CrossRefPubMed Krettli AU, Adebayo JO, Krettli LG. Testing of Natural Products and Synthetic Molecules Aiming at New Antimalarials. Curr Drug Targets. 2009;10:261–70.CrossRefPubMed
27.
go back to reference Adugna M, Feyera T, Taddese W, Admasu P. In Vivo Antimalarial Activity of Crude Extract of Aerial Part of Artemisia abyssinica against Plasmodium berghei in Mice. Global J Pharmacol. 2014;8:460–8. Adugna M, Feyera T, Taddese W, Admasu P. In Vivo Antimalarial Activity of Crude Extract of Aerial Part of Artemisia abyssinica against Plasmodium berghei in Mice. Global J Pharmacol. 2014;8:460–8.
28.
go back to reference Toma A, Deyno S, Fikru A, Eyado A, Beale A. In Vivo Antiplasmodial and Toxicological Effect of Crude Ethanol Extract of Echinops kebericho Traditionally Used in Treatment of Malaria in Ethiopia. Malar J. 2015;14:196.PubMedCentralCrossRefPubMed Toma A, Deyno S, Fikru A, Eyado A, Beale A. In Vivo Antiplasmodial and Toxicological Effect of Crude Ethanol Extract of Echinops kebericho Traditionally Used in Treatment of Malaria in Ethiopia. Malar J. 2015;14:196.PubMedCentralCrossRefPubMed
29.
go back to reference Builders MI, Uguru MO, Aguiyi C. Antiplasmodial Potential of the African Mistletoe: Agelanthus dodoneifolius Polh & Wiens. Indian J Pharm Sci. 2012;74:223–9.PubMedCentralCrossRefPubMed Builders MI, Uguru MO, Aguiyi C. Antiplasmodial Potential of the African Mistletoe: Agelanthus dodoneifolius Polh & Wiens. Indian J Pharm Sci. 2012;74:223–9.PubMedCentralCrossRefPubMed
30.
go back to reference Akele B. In vivo Antimalarial Activity of Areal Part Extracts of Gardenia lutea and Sida rhombifolia. Int J Res Pharmacol and Pharmacotherapeutics. 2013;2:234–41. Akele B. In vivo Antimalarial Activity of Areal Part Extracts of Gardenia lutea and Sida rhombifolia. Int J Res Pharmacol and Pharmacotherapeutics. 2013;2:234–41.
31.
go back to reference Adinew GM. Antimalarial Activity of Methanolic Extract of Phytolacca dodecandra Leaves against Plasmodium berghei Infected Swiss Albino Mice. Int J Pharmacol and Clin Sci. 2014;3:39–45. Adinew GM. Antimalarial Activity of Methanolic Extract of Phytolacca dodecandra Leaves against Plasmodium berghei Infected Swiss Albino Mice. Int J Pharmacol and Clin Sci. 2014;3:39–45.
32.
go back to reference Deharo E, Bourdy G, Quenevo C, Munoz V, Ruiz G, Sauvain M. A Search for Natural Bioactive Compounds in Bolivia through a Multidisciplinary Approach. Part V. Evaluation of the Antimalarial Activity of Plants Used By the Tacana Indians. J Ethnopharmacol. 2001;77:91–8.CrossRefPubMed Deharo E, Bourdy G, Quenevo C, Munoz V, Ruiz G, Sauvain M. A Search for Natural Bioactive Compounds in Bolivia through a Multidisciplinary Approach. Part V. Evaluation of the Antimalarial Activity of Plants Used By the Tacana Indians. J Ethnopharmacol. 2001;77:91–8.CrossRefPubMed
33.
go back to reference Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Mahmud R. Median Lethal Dose, Antimalarial Activity, Phytochemical Screening and Radical Scavenging of Methanolic Languas galangal Rhizome Extract. Molecules. 2010;15:8366–76.CrossRefPubMed Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Mahmud R. Median Lethal Dose, Antimalarial Activity, Phytochemical Screening and Radical Scavenging of Methanolic Languas galangal Rhizome Extract. Molecules. 2010;15:8366–76.CrossRefPubMed
34.
go back to reference Ogbole EA, Ogbole PJY, Builders MI, Aguiyi JC. Phytochemical Screening and In Vivo Antiplasmodial Sensitivity Study of Locally Cultivated Artemisia annua Leaf Extract against Plasmodium berghei. Am J Ethnomed. 2014;1:042–9. Ogbole EA, Ogbole PJY, Builders MI, Aguiyi JC. Phytochemical Screening and In Vivo Antiplasmodial Sensitivity Study of Locally Cultivated Artemisia annua Leaf Extract against Plasmodium berghei. Am J Ethnomed. 2014;1:042–9.
35.
go back to reference Ajaiyeoba E, Falade M, Ogbole O, Okpako L, Akinboye D. In Vivo Antimalarial and Cytotoxic Properties of Annona senegalensis extract. Afr J Trad CAM. 2006;3:137–41. Ajaiyeoba E, Falade M, Ogbole O, Okpako L, Akinboye D. In Vivo Antimalarial and Cytotoxic Properties of Annona senegalensis extract. Afr J Trad CAM. 2006;3:137–41.
36.
go back to reference Petros Z, Melaku D. In Vivo Antiplasmodial Activity of Adhatoda schimperiana Leaf Extract in Mice. Pharmacologyonline. 2012;3:95–103. Petros Z, Melaku D. In Vivo Antiplasmodial Activity of Adhatoda schimperiana Leaf Extract in Mice. Pharmacologyonline. 2012;3:95–103.
37.
go back to reference Saxena S, Pant N, Jain DC, Bhakuni RS. Antimalarial Agents from Plant Sources. Curr Sci. 2003;85:1314–29. Saxena S, Pant N, Jain DC, Bhakuni RS. Antimalarial Agents from Plant Sources. Curr Sci. 2003;85:1314–29.
38.
go back to reference Ginsburg H, Deharo E. A Call for Using Natural Compounds in the Development of New Antimalarial Treatments–An Introduction. Malar J. 2011;10:1–7.CrossRef Ginsburg H, Deharo E. A Call for Using Natural Compounds in the Development of New Antimalarial Treatments–An Introduction. Malar J. 2011;10:1–7.CrossRef
39.
go back to reference Rasoanaivo P, Wright CW, Willcox ML, Gilbert B. Whole Plant Extracts versus Single Compounds for the Treatment of Malaria: Synergy and Positive Interactions. Malar J. 2011;10:4–15.CrossRef Rasoanaivo P, Wright CW, Willcox ML, Gilbert B. Whole Plant Extracts versus Single Compounds for the Treatment of Malaria: Synergy and Positive Interactions. Malar J. 2011;10:4–15.CrossRef
40.
go back to reference Mengiste B, Makonnen E, Urga K. In Vivo Antimalarial Activity of Dodonaea angustifolia Seed Extracts Against Plasmodium berghei in Mice Model. MEJS. 2012;4:47–63. Mengiste B, Makonnen E, Urga K. In Vivo Antimalarial Activity of Dodonaea angustifolia Seed Extracts Against Plasmodium berghei in Mice Model. MEJS. 2012;4:47–63.
41.
go back to reference Abdulelah HAA, Zainal-Abidin BAH. In Vivo Antimalarial Tests of Nigella sativa (Black Seed) Different Extracts. Am J Pharm & Toxicol. 2007;2:46–50.CrossRef Abdulelah HAA, Zainal-Abidin BAH. In Vivo Antimalarial Tests of Nigella sativa (Black Seed) Different Extracts. Am J Pharm & Toxicol. 2007;2:46–50.CrossRef
42.
go back to reference Taherkhani M, Rustaiyan A, Nahrevanian H, Salehizadeh E. In Vivo Antimalarial Activity of Iranian Flora Artemisia oliveriana J. Gay ex DC. Extract and its Comparison with Other Antimalarial Drugs against Plasmodium berghei in Mice Model. TBAP. 2013;3:173–82. Taherkhani M, Rustaiyan A, Nahrevanian H, Salehizadeh E. In Vivo Antimalarial Activity of Iranian Flora Artemisia oliveriana J. Gay ex DC. Extract and its Comparison with Other Antimalarial Drugs against Plasmodium berghei in Mice Model. TBAP. 2013;3:173–82.
43.
go back to reference Salawu OA, Tijani AY, Babayi H, Nwaeze AC, Anagbogu RA, Agbakwuru VA. Antimalarial Activity of Ethanolic Stem Bark Extract of Faidherbia albida (Del) a. Chev (Mimosoidae) in Mice. Arch Appl Sci Res. 2010;2:261–8. Salawu OA, Tijani AY, Babayi H, Nwaeze AC, Anagbogu RA, Agbakwuru VA. Antimalarial Activity of Ethanolic Stem Bark Extract of Faidherbia albida (Del) a. Chev (Mimosoidae) in Mice. Arch Appl Sci Res. 2010;2:261–8.
Metadata
Title
Antimalarial activity of 80 % methanolic extract of Brassica nigra (L.) Koch. (Brassicaceae) seeds against Plasmodium berghei infection in mice
Authors
Abrham Belachew Muluye
Eshetie Melese
Getnet Mequanint Adinew
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0893-z

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue