Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Inhibitory effect of curcumin on testosterone induced benign prostatic hyperplasia rat model

Authors: Su Kang Kim, Hosik Seok, Hae Jeong Park, Hye Sook Jeon, Sang Wook Kang, Byung-Cheol Lee, Jooil Yi, Sang Yeol Song, Sang Hyub Lee, Young Ock Kim, Joo-Ho Chung

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Benign prostatic hyperplasia (BPH) is one of the common male diseases, which is provoked by dihydrotestosterone (DHT) and androgen signals. Several studies showed that curcumin has various effects of prevention and treatment to diseases. We investigated whether curcumin may repress the development of BPH in male Wistar rats.

Methods

Seven weeks male Wistar rats were and divided into 4 groups (normal group, BPH group, finasteride group, curcumin group; n = 8 for each group). In order to induce BPH in rats, rats were castrated and testosterone was injected subcutaneously everyday (s.c., 20 mg/kg). Rats in the curcumin group were treated 50 mg/kg, administered orally for 4 weeks. After 4 weeks, all rats were sacrificed and their prostate and serum were analyzed.

Results

Compared to the finasteride group as positive group, the curcumin group showed similarly protective effect on BPH in histopathologic morphology, prostate volume. Results of immunohistochemistry and western-blot showed decreased expressions of VEGF, TGF-ß1, and IGF1 were also decreased in the curcumin group.

Conclusions

These results suggested that curcumin inhibited the development of BPH and might a useful herbal treatment or functional food for BPH.
Literature
1.
go back to reference Lee YJ, Jeong SJ, Byun SS, Lee JJ, Han JW, Kim KW. Prevalence and correlates of nocturia in community-dwelling older men: results from the korean longitudinal study on health and aging. Korean J Urol. 2012;53(4):263–7.CrossRefPubMedPubMedCentral Lee YJ, Jeong SJ, Byun SS, Lee JJ, Han JW, Kim KW. Prevalence and correlates of nocturia in community-dwelling older men: results from the korean longitudinal study on health and aging. Korean J Urol. 2012;53(4):263–7.CrossRefPubMedPubMedCentral
2.
go back to reference Nandeesha H. Benign prostatic hyperplasia: dietary and metabolic risk factors. Int Urol Nephrol. 2008;40(3):649–56.CrossRefPubMed Nandeesha H. Benign prostatic hyperplasia: dietary and metabolic risk factors. Int Urol Nephrol. 2008;40(3):649–56.CrossRefPubMed
3.
go back to reference Zhu YS, Imperato-McGinley JL. 5alpha-reductase isozymes and androgen actions in the prostate. Ann N Y Acad Sci. 2009;1155:43–56.CrossRefPubMed Zhu YS, Imperato-McGinley JL. 5alpha-reductase isozymes and androgen actions in the prostate. Ann N Y Acad Sci. 2009;1155:43–56.CrossRefPubMed
4.
go back to reference Carson 3rd C, Rittmaster R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology. 2003;61(4 Suppl 1):2–7.CrossRefPubMed Carson 3rd C, Rittmaster R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology. 2003;61(4 Suppl 1):2–7.CrossRefPubMed
5.
go back to reference Uygur MC, Gur E, Arik AI, Altug U, Erol D. Erectile dysfunction following treatments of benign prostatic hyperplasia: a prospective study. Andrologia. 1998;30(1):5–10.CrossRefPubMed Uygur MC, Gur E, Arik AI, Altug U, Erol D. Erectile dysfunction following treatments of benign prostatic hyperplasia: a prospective study. Andrologia. 1998;30(1):5–10.CrossRefPubMed
6.
go back to reference Patel AK, Chapple CR. Medical management of lower urinary tract symptoms in men: current treatment and future approaches. Nat Clin Pract Urol. 2008;5(4):211–9.PubMed Patel AK, Chapple CR. Medical management of lower urinary tract symptoms in men: current treatment and future approaches. Nat Clin Pract Urol. 2008;5(4):211–9.PubMed
7.
go back to reference Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol. 2013;169(8):1672–92.CrossRefPubMedPubMedCentral Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol. 2013;169(8):1672–92.CrossRefPubMedPubMedCentral
8.
go back to reference Sahebkar A. A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clin Nutr. 2013;33(3):406–14.CrossRefPubMed Sahebkar A. A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clin Nutr. 2013;33(3):406–14.CrossRefPubMed
9.
go back to reference Nguyen TA, Friedman AJ. Curcumin: a novel treatment for skin-related disorders. J Drugs Dermatol. 2013;12(10):1131–7.PubMed Nguyen TA, Friedman AJ. Curcumin: a novel treatment for skin-related disorders. J Drugs Dermatol. 2013;12(10):1131–7.PubMed
10.
go back to reference Wang LL, Sun Y, Huang K, Zheng L. Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res. 2013;57(9):1557–68.CrossRefPubMed Wang LL, Sun Y, Huang K, Zheng L. Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res. 2013;57(9):1557–68.CrossRefPubMed
11.
go back to reference Chiu S, Terpstra KJ, Bureau Y, Hou J, Raheb H, Cernvosky Z, et al. Liposomal-formulated curcumin [Lipocurc] targeting HDAC (Histone Deacetylase) prevents apoptosis and improves motor deficits in Park 7 (DJ-1)-knockout rat model of Parkinson’s disease: implications for epigenetics-based nanotechnologydriven drug platform. J Complement Integr Med. 2013;10(1):75-88. Chiu S, Terpstra KJ, Bureau Y, Hou J, Raheb H, Cernvosky Z, et al. Liposomal-formulated curcumin [Lipocurc] targeting HDAC (Histone Deacetylase) prevents apoptosis and improves motor deficits in Park 7 (DJ-1)-knockout rat model of Parkinson’s disease: implications for epigenetics-based nanotechnologydriven drug platform. J Complement Integr Med. 2013;10(1):75-88.
12.
go back to reference Trujillo J, Chirino YI, Molina-Jijon E, Anderica-Romero AC, Tapia E, Pedraza-Chaverri J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol. 2013;1(1):448–56.CrossRefPubMedPubMedCentral Trujillo J, Chirino YI, Molina-Jijon E, Anderica-Romero AC, Tapia E, Pedraza-Chaverri J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol. 2013;1(1):448–56.CrossRefPubMedPubMedCentral
13.
go back to reference Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, et al. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 2013;65C:667–79.CrossRef Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, et al. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 2013;65C:667–79.CrossRef
14.
go back to reference Okudan N, Belviranli M, Gokbel H, Oz M, Kumak A. Protective effects of curcumin supplementation on intestinal ischemia reperfusion injury. Phytomedicine. 2013;20(10):844–8.CrossRefPubMed Okudan N, Belviranli M, Gokbel H, Oz M, Kumak A. Protective effects of curcumin supplementation on intestinal ischemia reperfusion injury. Phytomedicine. 2013;20(10):844–8.CrossRefPubMed
15.
go back to reference Zhou JH, Hao ML, Zhao S, Chen HE, Chen D, Ying L, et al. [Effects of curcumin on pneumocyte apoptosis and CHOP in pulmonary ischemia/reperfusion injury of mice]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2013;29(4):318–23.PubMed Zhou JH, Hao ML, Zhao S, Chen HE, Chen D, Ying L, et al. [Effects of curcumin on pneumocyte apoptosis and CHOP in pulmonary ischemia/reperfusion injury of mice]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2013;29(4):318–23.PubMed
16.
go back to reference Zhou G-Z, Sun G-C, Zhang S-N. Curcumin derivative HBC induces autophagy through activating AMPK signal in A549 cancer cells. Molecular Cellular Toxicol. 2015;11(1):29–34.CrossRef Zhou G-Z, Sun G-C, Zhang S-N. Curcumin derivative HBC induces autophagy through activating AMPK signal in A549 cancer cells. Molecular Cellular Toxicol. 2015;11(1):29–34.CrossRef
17.
go back to reference Shi Q, Shih CC, Lee KH. Novel anti-prostate cancer curcumin analogues that enhance androgen receptor degradation activity. Anticancer Agents Med Chem. 2009;9(8):904–12.CrossRefPubMed Shi Q, Shih CC, Lee KH. Novel anti-prostate cancer curcumin analogues that enhance androgen receptor degradation activity. Anticancer Agents Med Chem. 2009;9(8):904–12.CrossRefPubMed
18.
go back to reference Guo H, Xu YM, Ye ZQ, Yu JH, Hu XY. Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor. Pharmazie. 2013;68(6):431–4.PubMed Guo H, Xu YM, Ye ZQ, Yu JH, Hu XY. Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor. Pharmazie. 2013;68(6):431–4.PubMed
19.
go back to reference Shan B, Schaaf C, Schmidt A, Lucia K, Buchfelder M, Losa M, et al. Curcumin suppresses HIF1A synthesis and VEGFA release in pituitary adenomas. J Endocrinol. 2012;214(3):389–98.CrossRefPubMed Shan B, Schaaf C, Schmidt A, Lucia K, Buchfelder M, Losa M, et al. Curcumin suppresses HIF1A synthesis and VEGFA release in pituitary adenomas. J Endocrinol. 2012;214(3):389–98.CrossRefPubMed
20.
go back to reference Bae MK, Kim SH, Jeong JW, Lee YM, Kim HS, Kim SR, et al. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep. 2006;15(6):1557–62.PubMed Bae MK, Kim SH, Jeong JW, Lee YM, Kim HS, Kim SR, et al. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep. 2006;15(6):1557–62.PubMed
21.
go back to reference Kim HJ, Park JW, Cho YS, Cho CH, Kim JS, Shin HW, et al. Pathogenic role of HIF-1alpha in prostate hyperplasia in the presence of chronic inflammation. Biochim Biophys Acta. 2013;1832(1):183–94.CrossRefPubMed Kim HJ, Park JW, Cho YS, Cho CH, Kim JS, Shin HW, et al. Pathogenic role of HIF-1alpha in prostate hyperplasia in the presence of chronic inflammation. Biochim Biophys Acta. 2013;1832(1):183–94.CrossRefPubMed
22.
go back to reference Lee HS, Lee MJ, Kim H, Choi SK, Kim JE, Moon HI, et al. Curcumin inhibits TNFalpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem. 2010;25(5):720–9.CrossRefPubMed Lee HS, Lee MJ, Kim H, Choi SK, Kim JE, Moon HI, et al. Curcumin inhibits TNFalpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem. 2010;25(5):720–9.CrossRefPubMed
23.
go back to reference Ledda A, Belcaro G, Dugall M, Luzzi R, Scoccianti M, Togni S, et al. Meriva(R), a lecithinized curcumin delivery system, in the control of benign prostatic hyperplasia: a pilot, product evaluation registry study. Panminerva Med. 2012;54(1 Suppl 4):17–22.PubMed Ledda A, Belcaro G, Dugall M, Luzzi R, Scoccianti M, Togni S, et al. Meriva(R), a lecithinized curcumin delivery system, in the control of benign prostatic hyperplasia: a pilot, product evaluation registry study. Panminerva Med. 2012;54(1 Suppl 4):17–22.PubMed
24.
go back to reference Rick FG, Abi-Chaker A, Szalontay L, Perez R, Jaszberenyi M, Jayakumar AR, et al. Shrinkage of experimental benign prostatic hyperplasia and reduction of prostatic cell volume by a gastrin-releasing peptide antagonist. Proc Natl Acad Sci U S A. 2013;110(7):2617–22.CrossRefPubMedPubMedCentral Rick FG, Abi-Chaker A, Szalontay L, Perez R, Jaszberenyi M, Jayakumar AR, et al. Shrinkage of experimental benign prostatic hyperplasia and reduction of prostatic cell volume by a gastrin-releasing peptide antagonist. Proc Natl Acad Sci U S A. 2013;110(7):2617–22.CrossRefPubMedPubMedCentral
25.
go back to reference Corradi LS, Goes RM, Vilamaior PS, Taboga SR. Increased androgen receptor and remodeling in the prostatic stroma after the inhibition of 5-alpha reductase and aromatase in gerbil ventral prostate. Microsc Res Tech. 2009;72(12):939–50.CrossRefPubMed Corradi LS, Goes RM, Vilamaior PS, Taboga SR. Increased androgen receptor and remodeling in the prostatic stroma after the inhibition of 5-alpha reductase and aromatase in gerbil ventral prostate. Microsc Res Tech. 2009;72(12):939–50.CrossRefPubMed
26.
go back to reference Lai KP, Huang CK, Fang LY, Izumi K, Lo CW, Wood R, et al. Targeting stromal androgen receptor suppresses prolactin-driven benign prostatic hyperplasia (BPH). Mol Endocrinol. 2013;27(10):1617–31.CrossRefPubMedPubMedCentral Lai KP, Huang CK, Fang LY, Izumi K, Lo CW, Wood R, et al. Targeting stromal androgen receptor suppresses prolactin-driven benign prostatic hyperplasia (BPH). Mol Endocrinol. 2013;27(10):1617–31.CrossRefPubMedPubMedCentral
27.
go back to reference Bartsch G, Rittmaster RS, Klocker H. Dihydrotestosterone and the concept of 5alpha-reductase inhibition in human benign prostatic hyperplasia. Eur Urol. 2000;37(4):367–80.CrossRefPubMed Bartsch G, Rittmaster RS, Klocker H. Dihydrotestosterone and the concept of 5alpha-reductase inhibition in human benign prostatic hyperplasia. Eur Urol. 2000;37(4):367–80.CrossRefPubMed
28.
go back to reference Chen Y, Li T, Yu X, Li J, Luo D, Mo Z, et al. The RTK/ERK pathway is associated with prostate cancer risk on the SNP level: A pooled analysis of 41 sets of data from case–control studies. Gene. 2013;534(2):286–97.CrossRefPubMed Chen Y, Li T, Yu X, Li J, Luo D, Mo Z, et al. The RTK/ERK pathway is associated with prostate cancer risk on the SNP level: A pooled analysis of 41 sets of data from case–control studies. Gene. 2013;534(2):286–97.CrossRefPubMed
29.
go back to reference Soulitzis N, Karyotis I, Delakas D, Spandidos DA. Expression analysis of peptide growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia. Int J Oncol. 2006;29(2):305–14.PubMed Soulitzis N, Karyotis I, Delakas D, Spandidos DA. Expression analysis of peptide growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia. Int J Oncol. 2006;29(2):305–14.PubMed
30.
go back to reference Fuzio P, Ditonno P, Rutigliano M, Battaglia M, Bettocchi C, Loverre A, et al. Regulation of TGF-beta1 expression by androgen deprivation therapy of prostate cancer. Cancer Lett. 2012;318(2):135–44.CrossRefPubMed Fuzio P, Ditonno P, Rutigliano M, Battaglia M, Bettocchi C, Loverre A, et al. Regulation of TGF-beta1 expression by androgen deprivation therapy of prostate cancer. Cancer Lett. 2012;318(2):135–44.CrossRefPubMed
31.
go back to reference Rick FG, Schally AV, Block NL, Halmos G, Perez R, Fernandez JB, et al. LHRH antagonist Cetrorelix reduces prostate size and gene expression of proinflammatory cytokines and growth factors in a rat model of benign prostatic hyperplasia. Prostate. 2011;71(7):736–47.CrossRefPubMed Rick FG, Schally AV, Block NL, Halmos G, Perez R, Fernandez JB, et al. LHRH antagonist Cetrorelix reduces prostate size and gene expression of proinflammatory cytokines and growth factors in a rat model of benign prostatic hyperplasia. Prostate. 2011;71(7):736–47.CrossRefPubMed
32.
go back to reference Yu S, Xia S, Yang D, Wang K, Yeh S, Gao Z, et al. Androgen receptor in human prostate cancer-associated fibroblasts promotes prostate cancer epithelial cell growth and invasion. Med Oncol. 2013;30(3):674.CrossRefPubMed Yu S, Xia S, Yang D, Wang K, Yeh S, Gao Z, et al. Androgen receptor in human prostate cancer-associated fibroblasts promotes prostate cancer epithelial cell growth and invasion. Med Oncol. 2013;30(3):674.CrossRefPubMed
33.
go back to reference McLaren ID, Jerde TJ, Bushman W. Role of interleukins, IGF and stem cells in BPH. Differentiation. 2011;82(4–5):237–43.CrossRefPubMed McLaren ID, Jerde TJ, Bushman W. Role of interleukins, IGF and stem cells in BPH. Differentiation. 2011;82(4–5):237–43.CrossRefPubMed
34.
go back to reference Shao JC, Wang Y, Zhang SW, Luo DK, Chang DG, Wu XQ, et al. [Angiogenesis and regulatory factors in rats with BPH induced by testosterone]. Zhonghua Nan Ke Xue. 2005;11(6):413–8.PubMed Shao JC, Wang Y, Zhang SW, Luo DK, Chang DG, Wu XQ, et al. [Angiogenesis and regulatory factors in rats with BPH induced by testosterone]. Zhonghua Nan Ke Xue. 2005;11(6):413–8.PubMed
35.
go back to reference Niwa S, Ohya S, Kojima Y, Sasaki S, Yamamura H, Sakuragi M, et al. Down-regulation of the large-conductance Ca(2+)-activated K+ channel, K(Ca)1.1 in the prostatic stromal cells of benign prostate hyperplasia. Biol Pharm Bull. 2012;35(5):737–44.CrossRefPubMed Niwa S, Ohya S, Kojima Y, Sasaki S, Yamamura H, Sakuragi M, et al. Down-regulation of the large-conductance Ca(2+)-activated K+ channel, K(Ca)1.1 in the prostatic stromal cells of benign prostate hyperplasia. Biol Pharm Bull. 2012;35(5):737–44.CrossRefPubMed
36.
go back to reference Cross NA, Reid SV, Harvey AJ, Jokonya N, Eaton CL. Opposing actions of TGFbeta1 and FGF2 on growth, differentiation and extracellular matrix accumulation in prostatic stromal cells. Growth Factors. 2006;24(4):233–41.CrossRefPubMed Cross NA, Reid SV, Harvey AJ, Jokonya N, Eaton CL. Opposing actions of TGFbeta1 and FGF2 on growth, differentiation and extracellular matrix accumulation in prostatic stromal cells. Growth Factors. 2006;24(4):233–41.CrossRefPubMed
37.
go back to reference Descazeaud A, Weinbreck N, Robert G, Vacherot F, Abbou CC, Labrousse F, et al. Transforming growth factor beta-receptor II protein expression in benign prostatic hyperplasia is associated with prostate volume and inflammation. BJU Int. 2011;108(2 Pt 2):E23–8.CrossRefPubMed Descazeaud A, Weinbreck N, Robert G, Vacherot F, Abbou CC, Labrousse F, et al. Transforming growth factor beta-receptor II protein expression in benign prostatic hyperplasia is associated with prostate volume and inflammation. BJU Int. 2011;108(2 Pt 2):E23–8.CrossRefPubMed
38.
go back to reference Kleinberg DL, Ruan W, Yee D, Kovacs KT, Vidal S. Insulin-like growth factor (IGF)-I controls prostate fibromuscular development: IGF-I inhibition prevents both fibromuscular and glandular development in eugonadal mice. Endocrinology. 2007;148(3):1080–8.CrossRefPubMed Kleinberg DL, Ruan W, Yee D, Kovacs KT, Vidal S. Insulin-like growth factor (IGF)-I controls prostate fibromuscular development: IGF-I inhibition prevents both fibromuscular and glandular development in eugonadal mice. Endocrinology. 2007;148(3):1080–8.CrossRefPubMed
39.
go back to reference Youreva V, Kapakos G, Srivastava AK. Insulin-like growth-factor-1-induced PKB signaling and Egr-1 expression is inhibited by curcumin in A-10 vascular smooth muscle cells. Can J Physiol Pharmacol. 2013;91(3):241–7.CrossRefPubMed Youreva V, Kapakos G, Srivastava AK. Insulin-like growth-factor-1-induced PKB signaling and Egr-1 expression is inhibited by curcumin in A-10 vascular smooth muscle cells. Can J Physiol Pharmacol. 2013;91(3):241–7.CrossRefPubMed
40.
go back to reference Kapakos G, Youreva V, Srivastava AK. Attenuation of endothelin-1-induced PKB and ERK1/2 signaling, as well as Egr-1 expression, by curcumin in A-10 vascular smooth muscle cells. Can J Physiol Pharmacol. 2012;90(9):1277–85.CrossRefPubMed Kapakos G, Youreva V, Srivastava AK. Attenuation of endothelin-1-induced PKB and ERK1/2 signaling, as well as Egr-1 expression, by curcumin in A-10 vascular smooth muscle cells. Can J Physiol Pharmacol. 2012;90(9):1277–85.CrossRefPubMed
42.
go back to reference Xie P, Zhang W, Yuan S, Chen Z, Yang Q, Yuan D, et al. Suppression of experimental choroidal neovascularization by curcumin in mice. PLoS One. 2012;7(12):e53329.CrossRefPubMedPubMedCentral Xie P, Zhang W, Yuan S, Chen Z, Yang Q, Yuan D, et al. Suppression of experimental choroidal neovascularization by curcumin in mice. PLoS One. 2012;7(12):e53329.CrossRefPubMedPubMedCentral
43.
go back to reference Cho YJ, Yi CO, Jeon BT, Jeong YY, Kang GM, Lee JE, et al. Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs. Korean J Physiol Pharmacol. 2013;17(4):267–74.CrossRefPubMedPubMedCentral Cho YJ, Yi CO, Jeon BT, Jeong YY, Kang GM, Lee JE, et al. Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs. Korean J Physiol Pharmacol. 2013;17(4):267–74.CrossRefPubMedPubMedCentral
44.
go back to reference Kim G, Jang MS, Son YM, Seo MJ, Ji SY, Han SH, et al. Curcumin inhibits CD4(+) T cell activation, but augments CD69 expression and TGF-beta1-mediated generation of regulatory T cells at late phase. PLoS One. 2013;8(4):e62300.CrossRefPubMedPubMedCentral Kim G, Jang MS, Son YM, Seo MJ, Ji SY, Han SH, et al. Curcumin inhibits CD4(+) T cell activation, but augments CD69 expression and TGF-beta1-mediated generation of regulatory T cells at late phase. PLoS One. 2013;8(4):e62300.CrossRefPubMedPubMedCentral
45.
go back to reference Jacob A, Chaves L, Eadon MT, Chang A, Quigg RJ, Alexander JJ. Curcumin alleviates immune-complex-mediated glomerulonephritis in factor-H-deficient mice. Immunology. 2013;139(3):328–37.CrossRefPubMedPubMedCentral Jacob A, Chaves L, Eadon MT, Chang A, Quigg RJ, Alexander JJ. Curcumin alleviates immune-complex-mediated glomerulonephritis in factor-H-deficient mice. Immunology. 2013;139(3):328–37.CrossRefPubMedPubMedCentral
46.
Metadata
Title
Inhibitory effect of curcumin on testosterone induced benign prostatic hyperplasia rat model
Authors
Su Kang Kim
Hosik Seok
Hae Jeong Park
Hye Sook Jeon
Sang Wook Kang
Byung-Cheol Lee
Jooil Yi
Sang Yeol Song
Sang Hyub Lee
Young Ock Kim
Joo-Ho Chung
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0825-y

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue