Skip to main content
Top
Published in: BMC Oral Health 1/2019

Open Access 01-12-2019 | Oral and Maxillofacial Surgery | Research article

Current state of the art in the use of augmented reality in dentistry: a systematic review of the literature

Authors: Marco Farronato, Cinzia Maspero, Valentina Lanteri, Andrea Fama, Francesco Ferrati, Alessandro Pettenuzzo, Davide Farronato

Published in: BMC Oral Health | Issue 1/2019

Login to get access

Abstract

Background

The aim of the present systematic review was to screen the literature and to describe current applications of augmented reality.

Materials and methods

The protocol design was structured according to PRISMA-P guidelines and registered in PROSPERO. A review of the following databases was carried out: Medline, Ovid, Embase, Cochrane Library, Google Scholar and the Gray literature. Data was extracted, summarized and collected for qualitative analysis and evaluated for individual risk of bias (R.O.B.) assessment, by two independent examiners. Collected data included: year of publishing, journal with reviewing system and impact factor, study design, sample size, target of the study, hardware(s) and software(s) used or custom developed, primary outcomes, field of interest and quantification of the displacement error and timing measurements, when available. Qualitative evidence synthesis refers to SPIDER.

Results

From a primary research of 17,652 articles, 33 were considered in the review for qualitative synthesis. 16 among selected articles were eligible for quantitative synthesis of heterogenous data, 12 out of 13 judged the precision at least as acceptable, while 3 out of 6 described an increase in operation timing of about 1 h. 60% (n = 20) of selected studies refers to a camera-display augmented reality system while 21% (n = 7) refers to a head-mounted system. The software proposed in the articles were self-developed by 7 authors while the majority proposed commercially available ones. The applications proposed for augmented reality are: Oral and maxillo-facial surgery (OMS) in 21 studies, restorative dentistry in 5 studies, educational purposes in 4 studies and orthodontics in 1 study. The majority of the studies were carried on phantoms (51%) and those on patients were 11 (33%).

Conclusions

On the base of literature the current development is still insufficient for full validation process, however independent sources of customized software for augmented reality seems promising to help routinely procedures, complicate or specific interventions, education and learning. Oral and maxillofacial area is predominant, the results in precision are promising, while timing is still very controversial since some authors describe longer preparation time when using augmented reality up to 60 min while others describe a reduced operating time of 50/100%.

Trial registration

The following systematic review was registered in PROSPERO with RN: CRD42019120058.
Literature
1.
go back to reference Azuma RT. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997;6(4):355–85.CrossRef Azuma RT. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997;6(4):355–85.CrossRef
2.
go back to reference Bimber O, Raskar R. Spatial augmented reality: merging real and virtual worlds. Wellesley: AK Peters/CRC Press; 2005.CrossRef Bimber O, Raskar R. Spatial augmented reality: merging real and virtual worlds. Wellesley: AK Peters/CRC Press; 2005.CrossRef
3.
go back to reference Van Krevelen D, Poelman R. Augmented reality: technologies, applications, and limitations. Vrije Univ Amsterdam Dep Comput Sci. 2007;9(2):1-20. Van Krevelen D, Poelman R. Augmented reality: technologies, applications, and limitations. Vrije Univ Amsterdam Dep Comput Sci. 2007;9(2):1-20.
4.
go back to reference Ausburn LJ, Ausburn FB. Desktop virtual reality: a powerful new technology for teaching and research in industrial teacher education. J Ind Teach Educ. 2004;41(4):1–16. Ausburn LJ, Ausburn FB. Desktop virtual reality: a powerful new technology for teaching and research in industrial teacher education. J Ind Teach Educ. 2004;41(4):1–16.
5.
go back to reference Pulijala Y, Ma M, Pears M, Peebles D, Ayoub A. Effectiveness of immersive virtual reality in surgical training—a randomized control trial. J Oral Maxillofac Surg. 2018;76(5):1065–72.CrossRef Pulijala Y, Ma M, Pears M, Peebles D, Ayoub A. Effectiveness of immersive virtual reality in surgical training—a randomized control trial. J Oral Maxillofac Surg. 2018;76(5):1065–72.CrossRef
6.
go back to reference Joda T, Gallucci GO, Wismeijer D, Zitzmann NU. Augmented and virtual reality in dental medicine: a systematic review. Comput Biol Med. 2019;108:93-100.CrossRef Joda T, Gallucci GO, Wismeijer D, Zitzmann NU. Augmented and virtual reality in dental medicine: a systematic review. Comput Biol Med. 2019;108:93-100.CrossRef
7.
go back to reference Satava RM, Jones SB. Current and future applications of virtual reality for medicine. Proc IEEE. 1998;86(3):484–9.CrossRef Satava RM, Jones SB. Current and future applications of virtual reality for medicine. Proc IEEE. 1998;86(3):484–9.CrossRef
8.
go back to reference Suenaga H, Tran HH, Liao H, Masamune K, Dohi T, Hoshi K, et al. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study. Int J Oral Sci. 2013;5(2):98.CrossRef Suenaga H, Tran HH, Liao H, Masamune K, Dohi T, Hoshi K, et al. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study. Int J Oral Sci. 2013;5(2):98.CrossRef
9.
go back to reference Jayaram S, Connacher HI, Lyons KW. Virtual assembly using virtual reality techniques. Comput Aided Des. 1997;29(8):575–84.CrossRef Jayaram S, Connacher HI, Lyons KW. Virtual assembly using virtual reality techniques. Comput Aided Des. 1997;29(8):575–84.CrossRef
10.
go back to reference Farronato G, Santamaria G, Cressoni P, Falzone D, Colombo M. The digital-titanium Herbst. J Clin Orthod. 2011;45(5):263-7. quiz 287-8. Farronato G, Santamaria G, Cressoni P, Falzone D, Colombo M. The digital-titanium Herbst. J Clin Orthod. 2011;45(5):263-7. quiz 287-8.
11.
go back to reference Farronato G, Galbiati G, Esposito L, Mortellaro C, Zanoni F, Maspero C. Three-dimensional virtual treatment planning: Presurgical evaluation. J Craniofac Surg. 2018;29(5):e433–7.PubMed Farronato G, Galbiati G, Esposito L, Mortellaro C, Zanoni F, Maspero C. Three-dimensional virtual treatment planning: Presurgical evaluation. J Craniofac Surg. 2018;29(5):e433–7.PubMed
12.
go back to reference Caudell TP, Mizell DW. Augmented reality: an application of heads-up display technology to manual manufacturing processes. In: Proceedings of the twenty-fifth Hawaii international conference on system sciences, vol. 2. Kauai: IEEE; 1992. p. 659–69. Caudell TP, Mizell DW. Augmented reality: an application of heads-up display technology to manual manufacturing processes. In: Proceedings of the twenty-fifth Hawaii international conference on system sciences, vol. 2. Kauai: IEEE; 1992. p. 659–69.
13.
go back to reference Mangano F, Shibli JA, Fortin T. Digital dentistry: new materials and techniques. Int J Dent. 2016;2016:5261247. Mangano F, Shibli JA, Fortin T. Digital dentistry: new materials and techniques. Int J Dent. 2016;2016:5261247.
14.
go back to reference Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.CrossRef Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.CrossRef
15.
go back to reference Cooke A, Smith D, Booth A. Beyond PICO: the SPIDER tool for qualitative evidence synthesis. Qual Health Res. 2012;22(10):1435–43.CrossRef Cooke A, Smith D, Booth A. Beyond PICO: the SPIDER tool for qualitative evidence synthesis. Qual Health Res. 2012;22(10):1435–43.CrossRef
16.
go back to reference Jiang W, Ma L, Zhang B, Fan Y, Qu X, Zhang X, Liao H. Evaluation of the 3D augmented reality–guided intraoperative posit ioning of dental implants in edentulous mandibular models. Int J Oral Maxillofac Implants. 2018;33(6):1219-28.CrossRef Jiang W, Ma L, Zhang B, Fan Y, Qu X, Zhang X, Liao H. Evaluation of the 3D augmented reality–guided intraoperative posit ioning of dental implants in edentulous mandibular models. Int J Oral Maxillofac Implants. 2018;33(6):1219-28.CrossRef
17.
go back to reference Murugesan YP, Alsadoon A, Manoranjan P, Prasad PWC. A novel rotational matrix and translation vector algorithm: geometric accuracy for augmented reality in oral and maxillofacial surgeries. Int J Med Robot Comput Assist Surg. 2018;14(3):e1889.CrossRef Murugesan YP, Alsadoon A, Manoranjan P, Prasad PWC. A novel rotational matrix and translation vector algorithm: geometric accuracy for augmented reality in oral and maxillofacial surgeries. Int J Med Robot Comput Assist Surg. 2018;14(3):e1889.CrossRef
18.
go back to reference Schreurs R, Dubois L, Becking AG, Maal TJJ. Implant-oriented navigation in orbital reconstruction. Part 1: technique and accuracy study. Int J Oral Maxillofac Surg. 2018;47(3):395–402.CrossRef Schreurs R, Dubois L, Becking AG, Maal TJJ. Implant-oriented navigation in orbital reconstruction. Part 1: technique and accuracy study. Int J Oral Maxillofac Surg. 2018;47(3):395–402.CrossRef
19.
go back to reference Liu WP, Richmon JD, Sorger JM, Azizian M, Taylor RH. Augmented reality and cone beam CT guidance for transoral robotic surgery. J Robot Surg. 2015;9(3):223–33.CrossRef Liu WP, Richmon JD, Sorger JM, Azizian M, Taylor RH. Augmented reality and cone beam CT guidance for transoral robotic surgery. J Robot Surg. 2015;9(3):223–33.CrossRef
20.
go back to reference Qu M, Hou Y, Xu Y, Shen C, Zhu M, Xie L, et al. Precise positioning of an intraoral distractor using augmented reality in patients with hemifacial microsomia. J Cranio-Maxillofac Surg. 2015;43(1):106–12.CrossRef Qu M, Hou Y, Xu Y, Shen C, Zhu M, Xie L, et al. Precise positioning of an intraoral distractor using augmented reality in patients with hemifacial microsomia. J Cranio-Maxillofac Surg. 2015;43(1):106–12.CrossRef
21.
go back to reference Wang J, Suenaga H, Yang L, Kobayashi E, Sakuma I. Video see-through augmented reality for oral and maxillofacial surgery. Int J Med Robot Comput Assist Surg. 2017;13(2):e1754.CrossRef Wang J, Suenaga H, Yang L, Kobayashi E, Sakuma I. Video see-through augmented reality for oral and maxillofacial surgery. Int J Med Robot Comput Assist Surg. 2017;13(2):e1754.CrossRef
22.
go back to reference Zinser MJ, Mischkowski RA, Dreiseidler T, Thamm OC, Rothamel D, Zöller JE. Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display. Br J Oral Maxillofac Surg. 2013;51(8):827–33.CrossRef Zinser MJ, Mischkowski RA, Dreiseidler T, Thamm OC, Rothamel D, Zöller JE. Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display. Br J Oral Maxillofac Surg. 2013;51(8):827–33.CrossRef
23.
go back to reference Lin YK, Yau HT, Wang IC, Zheng C, Chung KH. A novel dental implant guided surgery based on integration of surgical template and augmented reality. Clin Implant Dent Relat Res. 2015;17(3):543–53.CrossRef Lin YK, Yau HT, Wang IC, Zheng C, Chung KH. A novel dental implant guided surgery based on integration of surgical template and augmented reality. Clin Implant Dent Relat Res. 2015;17(3):543–53.CrossRef
24.
go back to reference Aichert A, Wein W, Ladikos A, Reichl T, Navab N. Image-based tracking of the teeth for orthodontic augmented reality. In: International conference on medical image computing and computer-assisted intervention. Berlin, Heidelberg: Springer; 2012. p. 601–8. Aichert A, Wein W, Ladikos A, Reichl T, Navab N. Image-based tracking of the teeth for orthodontic augmented reality. In: International conference on medical image computing and computer-assisted intervention. Berlin, Heidelberg: Springer; 2012. p. 601–8.
25.
go back to reference Bruellmann DD, Tjaden H, Schwanecke U, Barth P. An optimized video system for augmented reality in endodontics: a feasibility study. Clin Oral Investig. 2013;17(2):441–8.CrossRef Bruellmann DD, Tjaden H, Schwanecke U, Barth P. An optimized video system for augmented reality in endodontics: a feasibility study. Clin Oral Investig. 2013;17(2):441–8.CrossRef
26.
go back to reference Zhu M, Chai G, Zhang Y, Ma X, Gan J. Registration strategy using occlusal splint based on augmented reality for mandibular angle oblique split osteotomy. J Craniofac Surg. 2011;22(5):1806–9.CrossRef Zhu M, Chai G, Zhang Y, Ma X, Gan J. Registration strategy using occlusal splint based on augmented reality for mandibular angle oblique split osteotomy. J Craniofac Surg. 2011;22(5):1806–9.CrossRef
27.
go back to reference Mischkowski RA, Zinser MJ, Kübler AC, Krug B, Seifert U, Zöller JE. Application of an augmented reality tool for maxillary positioning in orthognathic surgery–a feasibility study. J Cranio-Maxillofac Surg. 2006;34(8):478–83.CrossRef Mischkowski RA, Zinser MJ, Kübler AC, Krug B, Seifert U, Zöller JE. Application of an augmented reality tool for maxillary positioning in orthognathic surgery–a feasibility study. J Cranio-Maxillofac Surg. 2006;34(8):478–83.CrossRef
28.
go back to reference Ewers R, Schicho K, Undt G, Wanschitz F, Truppe M, Seemann R, Wagner A. Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review. Int J Oral Maxillofac Surg. 2005;34(1):1–8.CrossRef Ewers R, Schicho K, Undt G, Wanschitz F, Truppe M, Seemann R, Wagner A. Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review. Int J Oral Maxillofac Surg. 2005;34(1):1–8.CrossRef
29.
go back to reference Wierinck E, Puttemans V, Van Steenberghe D. Effect of tutorial input in addition to augmented feedback on manual dexterity training and its retention. Eur J Dent Educ. 2006;10(1):24–31.CrossRef Wierinck E, Puttemans V, Van Steenberghe D. Effect of tutorial input in addition to augmented feedback on manual dexterity training and its retention. Eur J Dent Educ. 2006;10(1):24–31.CrossRef
30.
go back to reference Ewers R, Schicho K, Wagner A, Undt G, Seemann R, Figl M, Truppe M. Seven years of clinical experience with teleconsultation in craniomaxillofacial surgery. J Oral Maxillofac Surg. 2005;63(10):1447–54.CrossRef Ewers R, Schicho K, Wagner A, Undt G, Seemann R, Figl M, Truppe M. Seven years of clinical experience with teleconsultation in craniomaxillofacial surgery. J Oral Maxillofac Surg. 2005;63(10):1447–54.CrossRef
31.
go back to reference Bogdan CM, Popovici DM. Information system analysis of an e-learning system used for dental restorations simulation. Comput Methods Prog Biomed. 2012;107(3):357–66.CrossRef Bogdan CM, Popovici DM. Information system analysis of an e-learning system used for dental restorations simulation. Comput Methods Prog Biomed. 2012;107(3):357–66.CrossRef
32.
go back to reference Espejo-Trung LC, Elian SN, Luz MAADC. Development and application of a new learning object for teaching operative dentistry using augmented reality. J Dent Educ. 2015;79(11):1356–62.PubMed Espejo-Trung LC, Elian SN, Luz MAADC. Development and application of a new learning object for teaching operative dentistry using augmented reality. J Dent Educ. 2015;79(11):1356–62.PubMed
33.
go back to reference Llena C, Folguera S, Forner L, Rodríguez-Lozano FJ. Implementation of augmented reality in operative dentistry learning. Eur J Dent Educ. 2018;22(1):e122–30.CrossRef Llena C, Folguera S, Forner L, Rodríguez-Lozano FJ. Implementation of augmented reality in operative dentistry learning. Eur J Dent Educ. 2018;22(1):e122–30.CrossRef
34.
go back to reference Badiali G, Ferrari V, Cutolo F, Freschi C, Caramella D, Bianchi A, Marchetti C. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning. J Cranio-Maxillofac Surg. 2014;42(8):1970–6.CrossRef Badiali G, Ferrari V, Cutolo F, Freschi C, Caramella D, Bianchi A, Marchetti C. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning. J Cranio-Maxillofac Surg. 2014;42(8):1970–6.CrossRef
35.
go back to reference Farronato M, Lucchina AG, Mortellaro C, Fama A, Galbiati G, Farronato G, Maspero C. Bilateral hyperplasia of the coronoid process in pediatric patients: what is the gold standard for treatment? J Craniofac Surg. 2019;30(4):1058-63.CrossRef Farronato M, Lucchina AG, Mortellaro C, Fama A, Galbiati G, Farronato G, Maspero C. Bilateral hyperplasia of the coronoid process in pediatric patients: what is the gold standard for treatment? J Craniofac Surg. 2019;30(4):1058-63.CrossRef
36.
go back to reference Won YJ, Kang SH. Application of augmented reality for inferior alveolar nerve block anesthesia: a technical note. J Dent Anesth Pain Med. 2017;17(2):129–34.CrossRef Won YJ, Kang SH. Application of augmented reality for inferior alveolar nerve block anesthesia: a technical note. J Dent Anesth Pain Med. 2017;17(2):129–34.CrossRef
37.
go back to reference Zhou C, Zhu M, Shi Y, Lin L, Chai G, Zhang Y, Xie L. Robot-assisted surgery for mandibular angle split osteotomy using augmented reality: preliminary results on clinical animal experiment. Aesthet Plast Surg. 2017;41(5):1228–36.CrossRef Zhou C, Zhu M, Shi Y, Lin L, Chai G, Zhang Y, Xie L. Robot-assisted surgery for mandibular angle split osteotomy using augmented reality: preliminary results on clinical animal experiment. Aesthet Plast Surg. 2017;41(5):1228–36.CrossRef
38.
go back to reference Plessas A. Computerized virtual reality simulation in preclinical dentistry: can a computerized simulator replace the conventional phantom heads and human instruction? Simul Healthc. 2017;12(5):332–8.CrossRef Plessas A. Computerized virtual reality simulation in preclinical dentistry: can a computerized simulator replace the conventional phantom heads and human instruction? Simul Healthc. 2017;12(5):332–8.CrossRef
39.
go back to reference Katić D, Spengler P, Bodenstedt S, Castrillon-Oberndorfer G, Seeberger R, Hoffmann J, et al. A system for context-aware intraoperative augmented reality in dental implant surgery. Int J Comput Assist Radiol Surg. 2015;10(1):101–8.CrossRef Katić D, Spengler P, Bodenstedt S, Castrillon-Oberndorfer G, Seeberger R, Hoffmann J, et al. A system for context-aware intraoperative augmented reality in dental implant surgery. Int J Comput Assist Radiol Surg. 2015;10(1):101–8.CrossRef
40.
go back to reference Wang J, Suenaga H, Hoshi K, Yang L, Kobayashi E, Sakuma I, Liao H. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery. IEEE Trans Biomed Eng. 2014;61(4):1295–304.CrossRef Wang J, Suenaga H, Hoshi K, Yang L, Kobayashi E, Sakuma I, Liao H. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery. IEEE Trans Biomed Eng. 2014;61(4):1295–304.CrossRef
41.
go back to reference Wierinck ER, Puttemans V, Swinnen SP, van Steenberghe D. Expert performance on a virtual reality simulation system. J Dent Educ. 2007;71(6):759–66.PubMed Wierinck ER, Puttemans V, Swinnen SP, van Steenberghe D. Expert performance on a virtual reality simulation system. J Dent Educ. 2007;71(6):759–66.PubMed
42.
go back to reference Wierinck E, Puttemans V, Swinnen S, van Steenberghe D. Effect of augmented visual feedback from a virtual reality simulation system on manual dexterity training. Eur J Dent Educ. 2005;9(1):10–6.CrossRef Wierinck E, Puttemans V, Swinnen S, van Steenberghe D. Effect of augmented visual feedback from a virtual reality simulation system on manual dexterity training. Eur J Dent Educ. 2005;9(1):10–6.CrossRef
43.
go back to reference Nijmeh AD, Goodger NM, Hawkes D, Edwards PJ, McGurk M. Image-guided navigation in oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 2005;43(4):294–302.CrossRef Nijmeh AD, Goodger NM, Hawkes D, Edwards PJ, McGurk M. Image-guided navigation in oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 2005;43(4):294–302.CrossRef
44.
go back to reference Shahrbanian S, Ma X, Aghaei N, Korner-Bitensky N, Moshiri K, Simmonds MJ. Use of virtual reality (immersive vs. non immersive) for pain management in children and adults: a systematic review of evidence from randomized controlled trials. Eur J Exp Biol. 2012;2(5):1408–22. Shahrbanian S, Ma X, Aghaei N, Korner-Bitensky N, Moshiri K, Simmonds MJ. Use of virtual reality (immersive vs. non immersive) for pain management in children and adults: a systematic review of evidence from randomized controlled trials. Eur J Exp Biol. 2012;2(5):1408–22.
45.
go back to reference Wang J, Suenaga H, Liao H, Hoshi K, Yang L, Kobayashi E, Sakuma I. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation. Comput Med Imaging Graphics. 2015;40:147-59.CrossRef Wang J, Suenaga H, Liao H, Hoshi K, Yang L, Kobayashi E, Sakuma I. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation. Comput Med Imaging Graphics. 2015;40:147-59.CrossRef
Metadata
Title
Current state of the art in the use of augmented reality in dentistry: a systematic review of the literature
Authors
Marco Farronato
Cinzia Maspero
Valentina Lanteri
Andrea Fama
Francesco Ferrati
Alessandro Pettenuzzo
Davide Farronato
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2019
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-019-0808-3

Other articles of this Issue 1/2019

BMC Oral Health 1/2019 Go to the issue