Skip to main content
Top
Published in: BMC Urology 1/2023

Open Access 01-12-2023 | Research

Identification of potential DNA methylation biomarkers related to diagnosis in patients with bladder cancer through integrated bioinformatic analysis

Authors: Hongxia Cheng, Yuhua Liu, Gang Chen

Published in: BMC Urology | Issue 1/2023

Login to get access

Abstract

Background

Bladder cancer (BLCA) is one of the most common malignancies among tumors worldwide. There are no validated biomarkers to facilitate such treatment diagnosis. DNA methylation modification plays important roles in epigenetics. Identifying methylated differentially expressed genes is a common method for the discovery of biomarkers.

Methods

Bladder cancer data were obtained from Gene Expression Omnibus (GEO), including the gene expression microarrays GSE37817( 18 patients and 3 normal ), GSE52519 (9 patients and 3 normal) and the gene methylation microarray GSE37816 (18 patients and 3 normal). Aberrantly expressed genes were obtained by GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed using the DAVID database and KOBAS. Protein-protein interactions (PPIs) and hub gene networks were constructed by STRING and Cytoscape software. The validation of the results which was confirmed through four online platforms, including Gene Expression Profiling Interactive Analysis (GEPIA), Gene Set Cancer Analysis (GSCA), cBioProtal and MEXPRESS.

Results

In total, 253 and 298 upregulated genes and 674 and 454 downregulated genes were identified for GSE37817 and GSE52519, respectively. For the GSE37816 dataset, hypermethylated and hypomethylated genes involving 778 and 3420 genes, respectively, were observed. Seventeen hypermethylated and low expression genes were enriched in biological processes associated with different organ development and morphogenesis. For molecular function, these genes showed enrichment in extracellular matrix structural constituents. Pathway enrichment showed drug metabolic enzymes and several amino acids metabolism, PI3K-Akt, Hedgehog signaling pathway. The top 3 hub genes screened by Cytoscape software were EFEMP1, SPARCL1 and ABCA8. The research results were verified using the GEPIA, GSCA, cBioProtal and EXPRESS databases, and the hub hypermethylated low expression genes were validated.

Conclusion

This study screened possible aberrantly methylated expression hub genes in BLCA by integrated bioinformatics analysis. The results may provide possible methylation-based biomarkers for the precise diagnosis and treatment of BLCA in the future.
Literature
1.
go back to reference Lotan Y, Baky FJ. Urine-Based Markers for Detection of Urothelial Cancer and for the Management of Non-muscle-Invasive Bladder Cancer. Urol Clin. 2023;50(1):53–67.CrossRef Lotan Y, Baky FJ. Urine-Based Markers for Detection of Urothelial Cancer and for the Management of Non-muscle-Invasive Bladder Cancer. Urol Clin. 2023;50(1):53–67.CrossRef
2.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef
3.
go back to reference Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25–41.PubMedCrossRef Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25–41.PubMedCrossRef
4.
go back to reference Babjuk M, Böhle A, Burger M, Capoun O, Cohen D, Compérat EM, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur Urol. 2017;71(3):447–61.PubMedCrossRef Babjuk M, Böhle A, Burger M, Capoun O, Cohen D, Compérat EM, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur Urol. 2017;71(3):447–61.PubMedCrossRef
5.
go back to reference De Nunzio C, Franco A, Simone G, Tuderti G, Anceschi U, Brassetti A, et al. Validation of the COBRA nomogram for the prediction of cancer specific survival in patients treated with radical cystectomy for bladder cancer: an international wide cohort study. Eur J Surg Oncol. 2021;47(10):2646–50.PubMedCrossRef De Nunzio C, Franco A, Simone G, Tuderti G, Anceschi U, Brassetti A, et al. Validation of the COBRA nomogram for the prediction of cancer specific survival in patients treated with radical cystectomy for bladder cancer: an international wide cohort study. Eur J Surg Oncol. 2021;47(10):2646–50.PubMedCrossRef
6.
go back to reference Steinbach D, Kaufmann M, Hippe J, Gajda M, Grimm MO. High Detection Rate for Non-Muscle-Invasive Bladder Cancer Using an Approved DNA Methylation Signature Test. Clin Genitourin Cancer. 2020;18(3):210–21.PubMedCrossRef Steinbach D, Kaufmann M, Hippe J, Gajda M, Grimm MO. High Detection Rate for Non-Muscle-Invasive Bladder Cancer Using an Approved DNA Methylation Signature Test. Clin Genitourin Cancer. 2020;18(3):210–21.PubMedCrossRef
8.
9.
go back to reference Willbanks A, Leary M, Greenshields M, Tyminski C, Heerboth S, Lapinska K, et al. The evolution of epigenetics: from prokaryotes to humans and its biological consequences. Genet Epigenetics. 2016;8:GEG–S31863. Willbanks A, Leary M, Greenshields M, Tyminski C, Heerboth S, Lapinska K, et al. The evolution of epigenetics: from prokaryotes to humans and its biological consequences. Genet Epigenetics. 2016;8:GEG–S31863.
10.
go back to reference Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21(35):5400–13.PubMedCrossRef Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21(35):5400–13.PubMedCrossRef
11.
go back to reference Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38.PubMedCrossRef Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38.PubMedCrossRef
12.
go back to reference Yang B, Guo M, Herman JG, Clark DP. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol. 2003;163(3):1101–7.PubMedPubMedCentralCrossRef Yang B, Guo M, Herman JG, Clark DP. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol. 2003;163(3):1101–7.PubMedPubMedCentralCrossRef
13.
go back to reference Shen CH, Li PY, Wang SC, Wu SR, Hsieh CY, Dai YC, et al. Epigenetic regulation of human WIF1 and DNA methylation situation of WIF1 and GSTM5 in urothelial carcinoma. Heliyon. 2023;9(5):e16004. Shen CH, Li PY, Wang SC, Wu SR, Hsieh CY, Dai YC, et al. Epigenetic regulation of human WIF1 and DNA methylation situation of WIF1 and GSTM5 in urothelial carcinoma. Heliyon. 2023;9(5):e16004.
14.
go back to reference Maruyama R, Toyooka S, Toyooka KO, Harada K, Virmani AK, Zöchbauer-Müller S, et al. Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res. 2001;61(24):8659–63. Maruyama R, Toyooka S, Toyooka KO, Harada K, Virmani AK, Zöchbauer-Müller S, et al. Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res. 2001;61(24):8659–63.
15.
go back to reference Dudziec E, Goepel JR, Catto JW. Global epigenetic profiling in bladder cancer. Epigenomics. 2011;3(1):35–45.PubMedCrossRef Dudziec E, Goepel JR, Catto JW. Global epigenetic profiling in bladder cancer. Epigenomics. 2011;3(1):35–45.PubMedCrossRef
16.
go back to reference Varol N, Keles İ, Yildiz H, Karaosmanoglu C, Karalar M, Zengin K, et al. Methylation analysis of histone 4-related gene HIST1H4F and its effect on gene expression in bladder cancer. Gene. 2023;866:147352.PubMedCrossRef Varol N, Keles İ, Yildiz H, Karaosmanoglu C, Karalar M, Zengin K, et al. Methylation analysis of histone 4-related gene HIST1H4F and its effect on gene expression in bladder cancer. Gene. 2023;866:147352.PubMedCrossRef
17.
go back to reference Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol. 2008;5(10):588–99.PubMedCrossRef Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol. 2008;5(10):588–99.PubMedCrossRef
18.
go back to reference Bejrananda T, Saetang J, Sangkhathat S. Molecular Subtyping in Muscle-Invasive Bladder Cancer on Predicting Survival and Response of Treatment. Biomedicines. 2022;11(1):69.PubMedPubMedCentralCrossRef Bejrananda T, Saetang J, Sangkhathat S. Molecular Subtyping in Muscle-Invasive Bladder Cancer on Predicting Survival and Response of Treatment. Biomedicines. 2022;11(1):69.PubMedPubMedCentralCrossRef
19.
go back to reference Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846–7.PubMedCrossRef Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846–7.PubMedCrossRef
20.
go back to reference Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–70.PubMedPubMedCentralCrossRef Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–70.PubMedPubMedCentralCrossRef
21.
go back to reference Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15(1):1–7.CrossRef Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15(1):1–7.CrossRef
22.
go back to reference Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49(W1):W317–25.PubMedPubMedCentralCrossRef Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49(W1):W317–25.PubMedPubMedCentralCrossRef
23.
go back to reference Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(4):1–7. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(4):1–7.
24.
go back to reference Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102.PubMedPubMedCentralCrossRef Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102.PubMedPubMedCentralCrossRef
25.
go back to reference Liu CJ, Hu FF, Xie GY, Miao YR, Li XW, Zeng Y, et al. GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief Bioinform. 2023;24(1):bbac558. Liu CJ, Hu FF, Xie GY, Miao YR, Li XW, Zeng Y, et al. GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief Bioinform. 2023;24(1):bbac558.
26.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disc. 2012;2(5):401–4.CrossRef Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disc. 2012;2(5):401–4.CrossRef
27.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):-pl1. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):-pl1.
28.
go back to reference Koch A, De Meyer T, Jeschke J, Van Criekinge W. MEXPRESS: visualizing expression, DNA methylation and clinical TCGA data. BMC Genomics. 2015;16:1–6.CrossRef Koch A, De Meyer T, Jeschke J, Van Criekinge W. MEXPRESS: visualizing expression, DNA methylation and clinical TCGA data. BMC Genomics. 2015;16:1–6.CrossRef
29.
go back to reference Rodriguez RHM, Rueda OB, Ibarz L. Bladder cancer: present and future. Medicina Clín (Engl Ed). 2017;149(10):449–55.CrossRef Rodriguez RHM, Rueda OB, Ibarz L. Bladder cancer: present and future. Medicina Clín (Engl Ed). 2017;149(10):449–55.CrossRef
30.
go back to reference Mastroianni R, Brassetti A, Krajewski W, Zdrojowy R, Al Salhi Y, Anceschi U, et al. Assessing the impact of the absence of detrusor muscle in Ta low-grade urothelial carcinoma of the bladder on recurrence-free survival. Eur Urol Focus. 2021;7(6):1324–31.PubMedCrossRef Mastroianni R, Brassetti A, Krajewski W, Zdrojowy R, Al Salhi Y, Anceschi U, et al. Assessing the impact of the absence of detrusor muscle in Ta low-grade urothelial carcinoma of the bladder on recurrence-free survival. Eur Urol Focus. 2021;7(6):1324–31.PubMedCrossRef
31.
go back to reference DeGeorge KC, Holt HR, Hodges SC. Bladder cancer: diagnosis and treatment. Am Fam Physician. 2017;96(8):507–14.PubMed DeGeorge KC, Holt HR, Hodges SC. Bladder cancer: diagnosis and treatment. Am Fam Physician. 2017;96(8):507–14.PubMed
32.
33.
go back to reference Coban N, Varol N. The effect of heat shock protein 90 inhibitors on histone 4 lysine 20 methylation in bladder cancer. EXCLI J. 2019;18:195.PubMedPubMedCentral Coban N, Varol N. The effect of heat shock protein 90 inhibitors on histone 4 lysine 20 methylation in bladder cancer. EXCLI J. 2019;18:195.PubMedPubMedCentral
34.
go back to reference Smith SC, Baras AS, Dancik G, Ru Y, Ding KF, Moskaluk CA, et al. A 20-gene model for molecular nodal staging of bladder cancer: development and prospective assessment. Lancet Oncol. 2011;12(2):137–43.PubMedPubMedCentralCrossRef Smith SC, Baras AS, Dancik G, Ru Y, Ding KF, Moskaluk CA, et al. A 20-gene model for molecular nodal staging of bladder cancer: development and prospective assessment. Lancet Oncol. 2011;12(2):137–43.PubMedPubMedCentralCrossRef
35.
go back to reference van der Heijden AG, Mengual L, Lozano JJ, Ingelmo-Torres M, Ribal MJ, Fernández PL, et al. A five-gene expression signature to predict progression in T1G3 bladder cancer. Eur J Cancer. 2016;64:127–36.PubMedCrossRef van der Heijden AG, Mengual L, Lozano JJ, Ingelmo-Torres M, Ribal MJ, Fernández PL, et al. A five-gene expression signature to predict progression in T1G3 bladder cancer. Eur J Cancer. 2016;64:127–36.PubMedCrossRef
36.
go back to reference Xu J, Shi Z, Wei J, Na R, Resurreccion WK, Wang CH, et al. KLK3 germline mutation I179T complements DNA repair genes for predicting prostate cancer progression. Prostate Cancer Prostatic Dis. 2022;25(4):749–54.PubMedCrossRef Xu J, Shi Z, Wei J, Na R, Resurreccion WK, Wang CH, et al. KLK3 germline mutation I179T complements DNA repair genes for predicting prostate cancer progression. Prostate Cancer Prostatic Dis. 2022;25(4):749–54.PubMedCrossRef
37.
go back to reference Baratchian M, Tiwari R, Khalighi S, Chakravarthy A, Yuan W, Berk M, et al. H3K9 methylation drives resistance to androgen receptor-antagonist therapy in prostate cancer. Proc Natl Acad Sci. 2022;119(21):e2114324119.PubMedPubMedCentralCrossRef Baratchian M, Tiwari R, Khalighi S, Chakravarthy A, Yuan W, Berk M, et al. H3K9 methylation drives resistance to androgen receptor-antagonist therapy in prostate cancer. Proc Natl Acad Sci. 2022;119(21):e2114324119.PubMedPubMedCentralCrossRef
38.
go back to reference Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res. 2005;94:29–86.PubMedCrossRef Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res. 2005;94:29–86.PubMedCrossRef
39.
go back to reference Kobayashi I, Semba S, Matsuda Y, Kuroda Y, Yokozaki H. Significance of Akt phosphorylation on tumor growth and vascular endothelial growth factor expression in human gastric carcinoma. Pathobiology. 2006;73(1):8–17.PubMedCrossRef Kobayashi I, Semba S, Matsuda Y, Kuroda Y, Yokozaki H. Significance of Akt phosphorylation on tumor growth and vascular endothelial growth factor expression in human gastric carcinoma. Pathobiology. 2006;73(1):8–17.PubMedCrossRef
40.
go back to reference Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(50):7455–64.PubMedCrossRef Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(50):7455–64.PubMedCrossRef
41.
go back to reference Markant SL, Esparza LA, Sun J, Barton KL, McCoig LM, Grant GA, et al. Targeting Sonic Hedgehog-Associated Medulloblastoma through Inhibition of Aurora and Polo-like KinasesTargeting Aurora and Polo-like Kinases in Medulloblastoma. Cancer Res. 2013;73(20):6310–22.PubMedPubMedCentralCrossRef Markant SL, Esparza LA, Sun J, Barton KL, McCoig LM, Grant GA, et al. Targeting Sonic Hedgehog-Associated Medulloblastoma through Inhibition of Aurora and Polo-like KinasesTargeting Aurora and Polo-like Kinases in Medulloblastoma. Cancer Res. 2013;73(20):6310–22.PubMedPubMedCentralCrossRef
42.
go back to reference Chitkara D, Singh S, Kumar V, Danquah M, Behrman SW, Kumar N, et al. Micellar delivery of cyclopamine and gefitinib for treating pancreatic cancer. Mol Pharm. 2012;9(8):2350–7.PubMedCrossRef Chitkara D, Singh S, Kumar V, Danquah M, Behrman SW, Kumar N, et al. Micellar delivery of cyclopamine and gefitinib for treating pancreatic cancer. Mol Pharm. 2012;9(8):2350–7.PubMedCrossRef
43.
go back to reference Singh S, Chitkara D, Mehrazin R, Behrman SW, Wake RW, Mahato RI. Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway. PLoS ONE. 2012;7(6):e40021.PubMedPubMedCentralCrossRef Singh S, Chitkara D, Mehrazin R, Behrman SW, Wake RW, Mahato RI. Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway. PLoS ONE. 2012;7(6):e40021.PubMedPubMedCentralCrossRef
44.
go back to reference Shi ZD, Han XX, Dong Y, Pang K, Dong Bz, Hao L, et al. Integrative multi-Omics analysis depicts the methylome and hydroxymethylome of recurrent bladder cancers and identifies biomarkers for predicting PD-L1 expression. Biomark Res. 2023;11:47. Shi ZD, Han XX, Dong Y, Pang K, Dong Bz, Hao L, et al. Integrative multi-Omics analysis depicts the methylome and hydroxymethylome of recurrent bladder cancers and identifies biomarkers for predicting PD-L1 expression. Biomark Res. 2023;11:47.
45.
go back to reference Chen S, Zhang N, Shao J, Wang T, Wang X. A novel gene signature combination improves the prediction of overall survival in urinary bladder cancer. J Cancer. 2019;10(23):5744.PubMedPubMedCentralCrossRef Chen S, Zhang N, Shao J, Wang T, Wang X. A novel gene signature combination improves the prediction of overall survival in urinary bladder cancer. J Cancer. 2019;10(23):5744.PubMedPubMedCentralCrossRef
46.
go back to reference Kitchen MO, Bryan RT, Haworth KE, Emes RD, Luscombe C, Gommersall L, et al. Methylation of HOXA9 and ISL1 predicts patient outcome in high-grade non-invasive bladder cancer. PLoS ONE. 2015;10(9):e0137003.PubMedPubMedCentralCrossRef Kitchen MO, Bryan RT, Haworth KE, Emes RD, Luscombe C, Gommersall L, et al. Methylation of HOXA9 and ISL1 predicts patient outcome in high-grade non-invasive bladder cancer. PLoS ONE. 2015;10(9):e0137003.PubMedPubMedCentralCrossRef
47.
go back to reference Kim YJ, Yoon HY, Kim JS, Kang HW, Min BD, Kim SK, et al. HOXA9, ISL1 and ALDH1A3 methylation patterns as prognostic markers for nonmuscle invasive bladder cancer: array-based DNA methylation and expression profiling. Int J Cancer. 2013;133(5):1135–42.PubMedCrossRef Kim YJ, Yoon HY, Kim JS, Kang HW, Min BD, Kim SK, et al. HOXA9, ISL1 and ALDH1A3 methylation patterns as prognostic markers for nonmuscle invasive bladder cancer: array-based DNA methylation and expression profiling. Int J Cancer. 2013;133(5):1135–42.PubMedCrossRef
48.
go back to reference Wu D, Cai W, Xu J, Liu X, Bai R, Zheng S, et al. SPARCL1 exhibits different expression pattern between left-and right-sided colon cancer and it was down-regulated via DNA methylation. Cancer Res. 2020;80(16_Supplement):1277. Wu D, Cai W, Xu J, Liu X, Bai R, Zheng S, et al. SPARCL1 exhibits different expression pattern between left-and right-sided colon cancer and it was down-regulated via DNA methylation. Cancer Res. 2020;80(16_Supplement):1277.
49.
go back to reference Zhang HP, Wu J, Liu ZF, Gao JW, Li SY. SPARCL1 Is a Novel Prognostic Biomarker and Correlates with Tumor Microenvironment in Colorectal Cancer. BioMed Res Int. 2022;2022:Article ID 1398268. Zhang HP, Wu J, Liu ZF, Gao JW, Li SY. SPARCL1 Is a Novel Prognostic Biomarker and Correlates with Tumor Microenvironment in Colorectal Cancer. BioMed Res Int. 2022;2022:Article ID 1398268.
50.
go back to reference Li J, Wang J, Liu Z, Guo H, Wei X, Wei Q, et al. Tumor-suppressive role of microfibrillar associated protein 4 and its clinical significance as prognostic factor and diagnostic biomarker in hepatocellular carcinoma. J Cancer Res Ther. 2022;18(7):1919–25.PubMedCrossRef Li J, Wang J, Liu Z, Guo H, Wei X, Wei Q, et al. Tumor-suppressive role of microfibrillar associated protein 4 and its clinical significance as prognostic factor and diagnostic biomarker in hepatocellular carcinoma. J Cancer Res Ther. 2022;18(7):1919–25.PubMedCrossRef
51.
go back to reference Lv C, Yang H, Yu J, Dai X. ABCA8 inhibits breast cancer cell proliferation by regulating the AMP activated protein kinase/mammalian target of rapamycin signaling pathway. Environ Toxicol. 2022;37(6):1423–31.PubMedCrossRef Lv C, Yang H, Yu J, Dai X. ABCA8 inhibits breast cancer cell proliferation by regulating the AMP activated protein kinase/mammalian target of rapamycin signaling pathway. Environ Toxicol. 2022;37(6):1423–31.PubMedCrossRef
52.
go back to reference Lee H, Park BC, Soon Kang J, Cheon Y, Lee S, Jae Maeng P. MAM domain containing 2 is a potential breast cancer biomarker that exhibits tumour-suppressive activity. Cell Prolif. 2020;53(9):e12883.PubMedPubMedCentralCrossRef Lee H, Park BC, Soon Kang J, Cheon Y, Lee S, Jae Maeng P. MAM domain containing 2 is a potential breast cancer biomarker that exhibits tumour-suppressive activity. Cell Prolif. 2020;53(9):e12883.PubMedPubMedCentralCrossRef
53.
go back to reference Lund RJ, Huhtinen K, Salmi J, Rantala J, Nguyen EV, Moulder R, et al. DNA methylation and transcriptome changes associated with cisplatin resistance in ovarian cancer. Sci Rep. 2017;7(1):1469.PubMedPubMedCentralCrossRef Lund RJ, Huhtinen K, Salmi J, Rantala J, Nguyen EV, Moulder R, et al. DNA methylation and transcriptome changes associated with cisplatin resistance in ovarian cancer. Sci Rep. 2017;7(1):1469.PubMedPubMedCentralCrossRef
54.
go back to reference Tomatsu S, Sukegawa K, Trandafirescu GG, Gutierrez MA, Nishioka T, Yamaguchi S, et al. Differences in methylation patterns in the methylation boundary region of IDS gene in Hunter syndrome patients: implications for CpG hot spot mutations. Eur J Hum Genet. 2006;14(7):838–45.PubMedCrossRef Tomatsu S, Sukegawa K, Trandafirescu GG, Gutierrez MA, Nishioka T, Yamaguchi S, et al. Differences in methylation patterns in the methylation boundary region of IDS gene in Hunter syndrome patients: implications for CpG hot spot mutations. Eur J Hum Genet. 2006;14(7):838–45.PubMedCrossRef
55.
go back to reference Du Q, Luu P, Stirzaker C, Clark S. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics. 2015;7:1051–73.PubMedCrossRef Du Q, Luu P, Stirzaker C, Clark S. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics. 2015;7:1051–73.PubMedCrossRef
56.
go back to reference Liang Y, Ma B, Jiang P, Yang HM. Identification of methylation-regulated differentially expressed genes and related pathways in hepatocellular carcinoma: a study based on TCGA database and bioinformatics analysis. Front Oncol. 2021;11:636093.PubMedPubMedCentralCrossRef Liang Y, Ma B, Jiang P, Yang HM. Identification of methylation-regulated differentially expressed genes and related pathways in hepatocellular carcinoma: a study based on TCGA database and bioinformatics analysis. Front Oncol. 2021;11:636093.PubMedPubMedCentralCrossRef
57.
go back to reference Henrique R, Jerónimo C. Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur Urol. 2004;46(5):660–9.PubMedCrossRef Henrique R, Jerónimo C. Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur Urol. 2004;46(5):660–9.PubMedCrossRef
Metadata
Title
Identification of potential DNA methylation biomarkers related to diagnosis in patients with bladder cancer through integrated bioinformatic analysis
Authors
Hongxia Cheng
Yuhua Liu
Gang Chen
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2023
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-023-01307-5

Other articles of this Issue 1/2023

BMC Urology 1/2023 Go to the issue