Skip to main content
Top
Published in: BMC Surgery 1/2021

Open Access 01-12-2021 | Polymerase Chain Reaction | Research article

Identification of population of bacteria from culture negative surgical site infection patients using molecular tool

Authors: Himanshu Sekhar Behera, Nirupama Chayani, Madhusmita Bal, Hemant Kumar Khuntia, Sanghamitra Pati, Sashibhusan Das, Manoranjan Ranjit

Published in: BMC Surgery | Issue 1/2021

Login to get access

Abstract

Background

Managing surgical site infections, with negative culture report in routine diagnosis is a common dilemma in microbiology accounting more than 30% worldwide. The present study attempted to identify the presence of bacterial spp. if any in wound aspirates/swabs of culture negative surgical site infections of hospitalised patients using molecular tools.

Methods

Ninety-seven patients with post-operative SSI whose wound swabs/aspirate were negative in the conventional aerobic culture after 72 h of incubation were analysed by 16S rRNA gene specific broad range PCR. The amplified DNA fragments were sequenced by Sanger DNA sequencing method and homology of the sequence were matched using NCBI BLAST (NCBI, USA)

Results

Of the 97 patients, 16S rRNA based broad range PCR assay could identify the presence of bacterial pathogen in 53(54.63%) cases, of which 29 isolates were supposed to be of viable but non-culturable bacteria (VBNC), 07 were of obligatory anaerobes and 13 were of unculturable bacteria, 04 were with poly bacterial infections.

Conclusions

Our study highlights the usefulness of PCR assay in detecting the presence of any VBNC, anaerobes and unculturable bacteria in SSI patients regardless of how well the bacteria may or may not grow in culture. Measures should be taken to use anaerobic culture system and PCR diagnosis along with conventional culture to detect the VBNC and unculturable bacteria where Gram stain is positive for better patient care.
Literature
2.
3.
go back to reference Mawalla B, Mshana SE, Chalya PL, Imirzalioglu C, Mahalu W. Predictors of surgical site infections among patients undergoing major surgery at Bugando Medical Centre in Northwestern Tanzania. BMC Surg. 2011;11(1):21.CrossRefPubMedPubMedCentral Mawalla B, Mshana SE, Chalya PL, Imirzalioglu C, Mahalu W. Predictors of surgical site infections among patients undergoing major surgery at Bugando Medical Centre in Northwestern Tanzania. BMC Surg. 2011;11(1):21.CrossRefPubMedPubMedCentral
4.
go back to reference Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–41.CrossRefPubMed Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–41.CrossRefPubMed
5.
go back to reference Arora A, Bharadwaj P, Chaturvedi H, Chowbey P, Gupta S, Leaper D, et al. A review of prevention of surgical site infections in Indian hospitals based on global guidelines for the prevention of surgical site infection, 2016. J Patient Saf Infect Control. 2018;6:1–12.CrossRef Arora A, Bharadwaj P, Chaturvedi H, Chowbey P, Gupta S, Leaper D, et al. A review of prevention of surgical site infections in Indian hospitals based on global guidelines for the prevention of surgical site infection, 2016. J Patient Saf Infect Control. 2018;6:1–12.CrossRef
6.
go back to reference European Centre for Disease Prevention and Control. Surveillance of surgical site infections in Europe 2010e2011.Stockholm: ECDC. 2013. European Centre for Disease Prevention and Control. Surveillance of surgical site infections in Europe 2010e2011.Stockholm: ECDC. 2013.
7.
go back to reference Spagnolo AM, Ottria G, Amicizia D, Perdelli F, Cristina ML. Operating theatre quality and prevention of surgical site infections. J Prev Med Hyg. 2013;54(3):131–7.PubMedPubMedCentral Spagnolo AM, Ottria G, Amicizia D, Perdelli F, Cristina ML. Operating theatre quality and prevention of surgical site infections. J Prev Med Hyg. 2013;54(3):131–7.PubMedPubMedCentral
9.
go back to reference Reddy BR. Management of culture-negative surgical site infections. J Med Allied Sci. 2012;2:02–6. Reddy BR. Management of culture-negative surgical site infections. J Med Allied Sci. 2012;2:02–6.
10.
go back to reference Lee JC, Baek MJ, Choi SW, Kwon SH, Kim KH, Park SY, et al. Retrospective analysis of culture-negative versus culture-positive postoperative spinal infections. Medicine (Baltimore). 2018;97(20):e10643.CrossRef Lee JC, Baek MJ, Choi SW, Kwon SH, Kim KH, Park SY, et al. Retrospective analysis of culture-negative versus culture-positive postoperative spinal infections. Medicine (Baltimore). 2018;97(20):e10643.CrossRef
11.
go back to reference Butler-Wu SM, Burns EM, Pottinger PS, Magaret AS, Rakeman JL, Matsen FA 3rd, Cookson BT. Optimization of periprosthetic culture for diagnosis of Propionibacterium acnes prosthetic joint infection. J Clin Microbiol. 2011;49(7):2490–5.CrossRefPubMedPubMedCentral Butler-Wu SM, Burns EM, Pottinger PS, Magaret AS, Rakeman JL, Matsen FA 3rd, Cookson BT. Optimization of periprosthetic culture for diagnosis of Propionibacterium acnes prosthetic joint infection. J Clin Microbiol. 2011;49(7):2490–5.CrossRefPubMedPubMedCentral
12.
go back to reference Barer M, Bogosian G, Steck T. The viable but nonculturable concept, bacteria in urine samples, and Occam’s razor. J Clin Microbiol. 2004;42:5434–5.CrossRefPubMedPubMedCentral Barer M, Bogosian G, Steck T. The viable but nonculturable concept, bacteria in urine samples, and Occam’s razor. J Clin Microbiol. 2004;42:5434–5.CrossRefPubMedPubMedCentral
13.
go back to reference Mukamolova GV, Kaprelyants AS, Kell DB, Young M. Adoption of the transiently non-culturable state—a bacterial survival strategy? Adv Microb Physiol. 2003;47:65–129.CrossRefPubMed Mukamolova GV, Kaprelyants AS, Kell DB, Young M. Adoption of the transiently non-culturable state—a bacterial survival strategy? Adv Microb Physiol. 2003;47:65–129.CrossRefPubMed
14.
go back to reference Zhao X, Zhong J, Wei C, Lin CW, Ding T. Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol. 2017;4(8):580. Zhao X, Zhong J, Wei C, Lin CW, Ding T. Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol. 2017;4(8):580.
15.
go back to reference Edmiston C Jr, Krepel C, Seabrook G, Jochimsen W. Anaerobic infections in the surgical patient: microbial etiology and therapy clinical infectious diseases. Clin Infect Dis. 2002a;35:S112–8.CrossRefPubMed Edmiston C Jr, Krepel C, Seabrook G, Jochimsen W. Anaerobic infections in the surgical patient: microbial etiology and therapy clinical infectious diseases. Clin Infect Dis. 2002a;35:S112–8.CrossRefPubMed
16.
go back to reference Rasnake M, Dooley D. Culture-negative surgical site infections. Surg Infect. 2007;7:555–65.CrossRef Rasnake M, Dooley D. Culture-negative surgical site infections. Surg Infect. 2007;7:555–65.CrossRef
19.
go back to reference Lilani SP, Jangale N, Chowdhary A, Daver GB. Surgical site infection in cleanand clean contaminated cases. Indian J Med Microbiol. 2005;23:249–52.PubMed Lilani SP, Jangale N, Chowdhary A, Daver GB. Surgical site infection in cleanand clean contaminated cases. Indian J Med Microbiol. 2005;23:249–52.PubMed
20.
go back to reference Arya M, Arya PK, Biswas D, Prasad R. Antimicrobial susceptibility pattern of bacterial isolates from post-operative wound infections. Indian J Pathol Microbiol. 2005;48:266.PubMed Arya M, Arya PK, Biswas D, Prasad R. Antimicrobial susceptibility pattern of bacterial isolates from post-operative wound infections. Indian J Pathol Microbiol. 2005;48:266.PubMed
21.
go back to reference Golia S, Kamath ASB, Nirmala AR. A study of superficial surgical site infections in a tertiary care hospital at Bangalore. Int J Res Med Sci. 2014;2:647–52.CrossRef Golia S, Kamath ASB, Nirmala AR. A study of superficial surgical site infections in a tertiary care hospital at Bangalore. Int J Res Med Sci. 2014;2:647–52.CrossRef
22.
go back to reference Bhave P, Kartikeyan S, Ramteerthakar M, Patil N. Bacteriological study of surgical site infections in a tertiary care hospital at Miraj, Maharashtra state. India Int J Res Med Sci. 2016;4:2630–5.CrossRef Bhave P, Kartikeyan S, Ramteerthakar M, Patil N. Bacteriological study of surgical site infections in a tertiary care hospital at Miraj, Maharashtra state. India Int J Res Med Sci. 2016;4:2630–5.CrossRef
23.
go back to reference Dellinger E. Surgical site infections. Amsterdam: Elsevier Inc.; 2011. p. 295–8. Dellinger E. Surgical site infections. Amsterdam: Elsevier Inc.; 2011. p. 295–8.
24.
go back to reference Mundhada AS, Tenpe S. A study of organisms causing surgical site infections and their antimicrobial susceptibility in a tertiary care government Hospital. Indian J Pathol Microbiol. 2015;58:195–200.CrossRefPubMed Mundhada AS, Tenpe S. A study of organisms causing surgical site infections and their antimicrobial susceptibility in a tertiary care government Hospital. Indian J Pathol Microbiol. 2015;58:195–200.CrossRefPubMed
26.
go back to reference Pochhammer J, Weller M-P, Schäffer M. Polihexanide for prevention of wound infection in surgery. Is the contact time essential? POLIS-trial: a historic controlled, clinical pilot trial. Wound Med. 2016;14:19–24.CrossRef Pochhammer J, Weller M-P, Schäffer M. Polihexanide for prevention of wound infection in surgery. Is the contact time essential? POLIS-trial: a historic controlled, clinical pilot trial. Wound Med. 2016;14:19–24.CrossRef
27.
go back to reference Loss G, Simões PM, Valour F, Cortês MF, Gonzaga L, Bergot M, et al. Staphylococcus aureus small colony variants (SCVs): news from a chronic prosthetic joint infection. Front Cell Infect Microbiol. 2019;9:363.CrossRefPubMedPubMedCentral Loss G, Simões PM, Valour F, Cortês MF, Gonzaga L, Bergot M, et al. Staphylococcus aureus small colony variants (SCVs): news from a chronic prosthetic joint infection. Front Cell Infect Microbiol. 2019;9:363.CrossRefPubMedPubMedCentral
28.
go back to reference Edmiston CE Jr, Walker AP, Krepel CJ, Gohr C. The nonpuerperal breast infection: aerobic and anaerobic microbial recovery from acute and chronic disease. J Infect Dis. 1990;162:695–9.CrossRefPubMed Edmiston CE Jr, Walker AP, Krepel CJ, Gohr C. The nonpuerperal breast infection: aerobic and anaerobic microbial recovery from acute and chronic disease. J Infect Dis. 1990;162:695–9.CrossRefPubMed
29.
go back to reference Thilesen C, Nicolaidis M, Lökebö J, Falsen E, Jorde A, Müller F. Leptotrichiaamnionii, an emerging pathogen of the female urogenital tract. J Clin Microbiol. 2007;45:2344–7.CrossRefPubMedPubMedCentral Thilesen C, Nicolaidis M, Lökebö J, Falsen E, Jorde A, Müller F. Leptotrichiaamnionii, an emerging pathogen of the female urogenital tract. J Clin Microbiol. 2007;45:2344–7.CrossRefPubMedPubMedCentral
30.
go back to reference Sintchenko V, Jelfs P, Sharma A, Hicks L, Gilbert G, Waller C. Massilia timonae: an unusual bacterium causing wound infection following surgery. Clin Microbiol Newsl. 2000;22:149–51.CrossRef Sintchenko V, Jelfs P, Sharma A, Hicks L, Gilbert G, Waller C. Massilia timonae: an unusual bacterium causing wound infection following surgery. Clin Microbiol Newsl. 2000;22:149–51.CrossRef
32.
go back to reference Alexiou K, Drikos I, Terzopoulou M, Sikalias N, Ioannidis A, Economou NA. Prospective randomised trial of isolated pathogens of surgical site infections (SSI). Ann Med Surg. 2017;21:25–9.CrossRef Alexiou K, Drikos I, Terzopoulou M, Sikalias N, Ioannidis A, Economou NA. Prospective randomised trial of isolated pathogens of surgical site infections (SSI). Ann Med Surg. 2017;21:25–9.CrossRef
33.
go back to reference Li L, Mendis N, Trigui H, Oliver J, Faucher S. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. 2014;5:258.PubMedPubMedCentral Li L, Mendis N, Trigui H, Oliver J, Faucher S. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. 2014;5:258.PubMedPubMedCentral
34.
go back to reference Wang W, Chen J, Chen G, Du X, Cui P, et al. Transposon mutagenesis identifies novel genes associated with Staphylococcus aureus persister formation. Front Microbiol. 2015;23:1437. Wang W, Chen J, Chen G, Du X, Cui P, et al. Transposon mutagenesis identifies novel genes associated with Staphylococcus aureus persister formation. Front Microbiol. 2015;23:1437.
35.
go back to reference Ananth-Shenoy P, Vishwanath S, Targain R, Shetty S. Sunil-Rodrigues G et al Anaerobic infections in surgical wards—a two year study. Iran J Microbiol. 2016;8:181–6.PubMedPubMedCentral Ananth-Shenoy P, Vishwanath S, Targain R, Shetty S. Sunil-Rodrigues G et al Anaerobic infections in surgical wards—a two year study. Iran J Microbiol. 2016;8:181–6.PubMedPubMedCentral
36.
go back to reference Edmiston C Jr, Krepel C, Seabrook G, Jochimsen W. Anaerobic infections in the surgical patient: microbial etiology and therapy. Clin Infect Dis. 2002b;35:S112–8.CrossRefPubMed Edmiston C Jr, Krepel C, Seabrook G, Jochimsen W. Anaerobic infections in the surgical patient: microbial etiology and therapy. Clin Infect Dis. 2002b;35:S112–8.CrossRefPubMed
Metadata
Title
Identification of population of bacteria from culture negative surgical site infection patients using molecular tool
Authors
Himanshu Sekhar Behera
Nirupama Chayani
Madhusmita Bal
Hemant Kumar Khuntia
Sanghamitra Pati
Sashibhusan Das
Manoranjan Ranjit
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2021
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-020-01016-y

Other articles of this Issue 1/2021

BMC Surgery 1/2021 Go to the issue