Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Research article

Biomechanical comparison of tenodesis reconstruction for subtalar instability: a finite element analysis

Authors: Xu Can, Li Mingqing, Wang Chenggong, Liu Hua

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

There are several types of tenodesis reconstruction designed for subtalar instability. However, no comprehensive comparison has been conducted among these procedures in terms of their correcting power so far. The objective of this study is to evaluate the biomechanical behaviors of 5 representative procedures through finite element analysis.

Methods

Finite element models were established and validated based on one of our previous studies. The Pisani interosseous talocalcaneal ligament (ITCL) reconstruction, Schon cervical ligament (CL) reconstruction and Choisne calcaneofibular ligament (CFL) reconstruction were compared on the model with the CFL, ITCL and CL sectioned. The Schon triligamentous reconstruction and Mann triligamentous reconstruction were compared on the model with the CFL, ITCL and CL, as well as the ATFL sectioned. The inversion and external/internal rotation were quantified at different ankle positions based on the rotational moment. Then, the stress in ligaments and reconstructed grafts and the contact characteristics of the subtalar joint under inversional stress test were calculated and compared accordingly.

Results

For single ligament reconstruction, the Choisne CFL reconstruction provided the greatest degree of correction for subtalar instability, followed by the Schon CL reconstruction and then the Pisani ITCL reconstruction. For triligamentous reconstruction, the Mann procedure outperformed the Schon procedure in alleviating the subtalar instability.

Conclusion

The finite element analysis showed that the Choisne CFL reconstruction and Mann triligamentous reconstruction provided the greatest degree of immediate postoperative subtalar stability. However, both procedures could not restore the biomechanical behaviors of the subtalar joint to normal. The long-term efficacy of these procedures warrants further investigation using a substantially larger sample of clinical cases.
Literature
1.
go back to reference Hertel J. Functional anatomy, Pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364–75.PubMedPubMedCentral Hertel J. Functional anatomy, Pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364–75.PubMedPubMedCentral
2.
go back to reference Meyer JM, Garcia J, Hoffmeyer P, Fritschy D. The subtalar sprain. A roentgenographic study. Clin Orthop Related Res. 1988;226:169–73. Meyer JM, Garcia J, Hoffmeyer P, Fritschy D. The subtalar sprain. A roentgenographic study. Clin Orthop Related Res. 1988;226:169–73.
3.
go back to reference Karlsson J, Eriksson BI, Renstrom PA. Subtalar ankle instability. A review. Sports Med (Auckland, NZ). 1997;24(5):337–46.CrossRef Karlsson J, Eriksson BI, Renstrom PA. Subtalar ankle instability. A review. Sports Med (Auckland, NZ). 1997;24(5):337–46.CrossRef
4.
go back to reference Pellegrini MJ, Glisson RR, Wurm M, Ousema PH, Romash MM, Nunley JA 2nd, Easley ME. Systematic quantification of stabilizing effects of Subtalar joint soft-tissue constraints in a novel cadaveric model. J Bone Joint Surg Am. 2016;98(10):842–8.PubMedCrossRef Pellegrini MJ, Glisson RR, Wurm M, Ousema PH, Romash MM, Nunley JA 2nd, Easley ME. Systematic quantification of stabilizing effects of Subtalar joint soft-tissue constraints in a novel cadaveric model. J Bone Joint Surg Am. 2016;98(10):842–8.PubMedCrossRef
5.
go back to reference Tochigi Y, Takahashi K, Yamagata M, Tamaki T. Influence of the interosseous talocalcaneal ligament injury on stability of the ankle-subtalar joint complex--a cadaveric experimental study. Foot Ankle international. 2000;21(6):486–91.PubMedCrossRef Tochigi Y, Takahashi K, Yamagata M, Tamaki T. Influence of the interosseous talocalcaneal ligament injury on stability of the ankle-subtalar joint complex--a cadaveric experimental study. Foot Ankle international. 2000;21(6):486–91.PubMedCrossRef
6.
go back to reference Weindel S, Schmidt R, Rammelt S, Claes L, Campe VA, Rein S. Subtalar instability: a biomechanical cadaver study. Arch Orthop Trauma Surg. 2010;130(3):313–9.PubMedCrossRef Weindel S, Schmidt R, Rammelt S, Claes L, Campe VA, Rein S. Subtalar instability: a biomechanical cadaver study. Arch Orthop Trauma Surg. 2010;130(3):313–9.PubMedCrossRef
7.
go back to reference Kjaersgaard-Andersen P, Wethelund JO, Helmig P, Soballe K. The stabilizing effect of the ligamentous structures in the sinus and canalis tarsi on movements in the hindfoot. An experimental study. Am J Sports Med. 1988;16(5):512–6.PubMedCrossRef Kjaersgaard-Andersen P, Wethelund JO, Helmig P, Soballe K. The stabilizing effect of the ligamentous structures in the sinus and canalis tarsi on movements in the hindfoot. An experimental study. Am J Sports Med. 1988;16(5):512–6.PubMedCrossRef
9.
go back to reference Chrisman OD, Snook GA. Reconstruction of lateral ligament tears of the ankle. An experimental study and clinical evaluation of seven patients treated by a new modification of the Elmslie procedure. J Bone Joint Surg Am. 1969;51(5):904–12.PubMedCrossRef Chrisman OD, Snook GA. Reconstruction of lateral ligament tears of the ankle. An experimental study and clinical evaluation of seven patients treated by a new modification of the Elmslie procedure. J Bone Joint Surg Am. 1969;51(5):904–12.PubMedCrossRef
10.
go back to reference Brattstrom H. Tenodesis employing the method of Watson-Jones for the treatment of recurrent subluxation of the ankle. Acta Orthop Scand. 1953;23(2):132–6.PubMedCrossRef Brattstrom H. Tenodesis employing the method of Watson-Jones for the treatment of recurrent subluxation of the ankle. Acta Orthop Scand. 1953;23(2):132–6.PubMedCrossRef
11.
go back to reference Pisani G. Chronic laxity of the subtalar joint. Orthopedics. 1996;19(5):431–7.PubMed Pisani G. Chronic laxity of the subtalar joint. Orthopedics. 1996;19(5):431–7.PubMed
12.
go back to reference Schon LC, Clanton TO, Baxter DE. Reconstruction for subtalar instability: a review. Foot Ankle. 1991;11(5):319–25.PubMedCrossRef Schon LC, Clanton TO, Baxter DE. Reconstruction for subtalar instability: a review. Foot Ankle. 1991;11(5):319–25.PubMedCrossRef
13.
go back to reference Choisne J, Hoch MC, Alexander I, Ringleb SI. Effect of direct ligament repair and Tenodesis reconstruction on simulated Subtalar joint instability. Foot Ankle Int. 2017;38(3):324–30.PubMedCrossRef Choisne J, Hoch MC, Alexander I, Ringleb SI. Effect of direct ligament repair and Tenodesis reconstruction on simulated Subtalar joint instability. Foot Ankle Int. 2017;38(3):324–30.PubMedCrossRef
14.
go back to reference Thomas O. Clanton, Waldrop NE: Athletic Injuries to the Soft Tissues of the Foot and Ankle. In: Mann’s Surgery of the Foot and Ankle. Volume 2, 9. Coughlin MJ, Saltzman CL, Anderson RB: Mosby; 2013: 1607. Thomas O. Clanton, Waldrop NE: Athletic Injuries to the Soft Tissues of the Foot and Ankle. In: Mann’s Surgery of the Foot and Ankle. Volume 2, 9. Coughlin MJ, Saltzman CL, Anderson RB: Mosby; 2013: 1607.
15.
go back to reference Xu C, Li MQ, Wang C, Liu H. Nonanatomic versus anatomic techniques in spring ligament reconstruction: biomechanical assessment via a finite element model. J Orthop Surg Res. 2019;14(1):114.PubMedPubMedCentralCrossRef Xu C, Li MQ, Wang C, Liu H. Nonanatomic versus anatomic techniques in spring ligament reconstruction: biomechanical assessment via a finite element model. J Orthop Surg Res. 2019;14(1):114.PubMedPubMedCentralCrossRef
16.
go back to reference Golano P, Vega J, de Leeuw PA, Malagelada F, Manzanares MC, Gotzens V, van Dijk CN. Anatomy of the ankle ligaments: a pictorial essay. Knee Surg Sports Traumatol Arthroscopy. 2016;24(4):944–56.CrossRef Golano P, Vega J, de Leeuw PA, Malagelada F, Manzanares MC, Gotzens V, van Dijk CN. Anatomy of the ankle ligaments: a pictorial essay. Knee Surg Sports Traumatol Arthroscopy. 2016;24(4):944–56.CrossRef
17.
go back to reference Kelilian AS. SK S: Sarrafian’s anatomy of the foot and ankle. Philadelphia: Wolters Klover Health, LWW; 2011. Kelilian AS. SK S: Sarrafian’s anatomy of the foot and ankle. Philadelphia: Wolters Klover Health, LWW; 2011.
18.
go back to reference Funk JR, Hall GW, Crandall JR, Pilkey WD. Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng. 2000;122(1):15–22.PubMedCrossRef Funk JR, Hall GW, Crandall JR, Pilkey WD. Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng. 2000;122(1):15–22.PubMedCrossRef
19.
go back to reference Siegler S, Chen J, Schneck CD. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints--part I: kinematics. J Biomech Eng. 1988;110(4):364–73.PubMedCrossRef Siegler S, Chen J, Schneck CD. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints--part I: kinematics. J Biomech Eng. 1988;110(4):364–73.PubMedCrossRef
20.
go back to reference Mkandawire C, Ledoux WR, Sangeorzan BJ, Ching RP. Foot and ankle ligament morphometry. J Rehabil Res Dev. 2005;42(6):809–20.PubMedCrossRef Mkandawire C, Ledoux WR, Sangeorzan BJ, Ching RP. Foot and ankle ligament morphometry. J Rehabil Res Dev. 2005;42(6):809–20.PubMedCrossRef
21.
go back to reference Shin J, Yue N, Untaroiu CD. A finite element model of the foot and ankle for automotive impact applications. Ann Biomed Eng. 2012;40(12):2519–31.PubMedCrossRef Shin J, Yue N, Untaroiu CD. A finite element model of the foot and ankle for automotive impact applications. Ann Biomed Eng. 2012;40(12):2519–31.PubMedCrossRef
22.
go back to reference Cheung JT, An KN, Zhang M. Consequences of partial and total plantar fascia release: a finite element study. Foot Ankle Int. 2006;27(2):125–32.PubMedCrossRef Cheung JT, An KN, Zhang M. Consequences of partial and total plantar fascia release: a finite element study. Foot Ankle Int. 2006;27(2):125–32.PubMedCrossRef
23.
go back to reference Kitaoka HB, Luo ZP, Growney ES, Berglund LJ, An KN. Material properties of the plantar aponeurosis. Foot Ankle Int. 1994;15(10):557–60.PubMedCrossRef Kitaoka HB, Luo ZP, Growney ES, Berglund LJ, An KN. Material properties of the plantar aponeurosis. Foot Ankle Int. 1994;15(10):557–60.PubMedCrossRef
24.
go back to reference Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA. Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng. 2008;130(5):051008.PubMedPubMedCentralCrossRef Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA. Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng. 2008;130(5):051008.PubMedPubMedCentralCrossRef
25.
go back to reference Bohnsack M, Surie B, Kirsch IL, Wulker N. Biomechanical properties of commonly used autogenous transplants in the surgical treatment of chronic lateral ankle instability. Foot Ankle Int. 2002;23(7):661–4.PubMedCrossRef Bohnsack M, Surie B, Kirsch IL, Wulker N. Biomechanical properties of commonly used autogenous transplants in the surgical treatment of chronic lateral ankle instability. Foot Ankle Int. 2002;23(7):661–4.PubMedCrossRef
26.
go back to reference Weiss JA, Gardiner JC, Bonifasi-Lista C. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J Biomech. 2002;35(7):943–50.PubMedCrossRef Weiss JA, Gardiner JC, Bonifasi-Lista C. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J Biomech. 2002;35(7):943–50.PubMedCrossRef
27.
go back to reference Burkhart TA, Andrews DM, Dunning CE. Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue. J Biomech. 2013;46(9):1477–88.PubMedCrossRef Burkhart TA, Andrews DM, Dunning CE. Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue. J Biomech. 2013;46(9):1477–88.PubMedCrossRef
28.
29.
go back to reference Pisani G, Pisani PC, Parino E. Sinus tarsi syndrome and subtalar joint instability. Clinics Podiatric Medicine Surgery. 2005;22(1):63–77.CrossRef Pisani G, Pisani PC, Parino E. Sinus tarsi syndrome and subtalar joint instability. Clinics Podiatric Medicine Surgery. 2005;22(1):63–77.CrossRef
30.
go back to reference Knudson GA, Kitaoka HB, Lu C-L, Luo ZP, An K-N. Subtalar joint stability: Talocalcaneal interosseous ligament function studied in cadaver specimens. Acta Orthop Scand. 1997;68(5):442–6.PubMedCrossRef Knudson GA, Kitaoka HB, Lu C-L, Luo ZP, An K-N. Subtalar joint stability: Talocalcaneal interosseous ligament function studied in cadaver specimens. Acta Orthop Scand. 1997;68(5):442–6.PubMedCrossRef
31.
go back to reference Tochigi Y, Amendola A, Rudert MJ, Baer TE, Brown TD, Hillis SL, Saltzman CL. The role of the Interosseous Talocalcaneal ligament in Subtalar joint stability. Foot Ankle Int. 2004;25(8):588–96.PubMedCrossRef Tochigi Y, Amendola A, Rudert MJ, Baer TE, Brown TD, Hillis SL, Saltzman CL. The role of the Interosseous Talocalcaneal ligament in Subtalar joint stability. Foot Ankle Int. 2004;25(8):588–96.PubMedCrossRef
32.
go back to reference Li SY, Hou ZD, Zhang P, Li HL, Ding ZH, Liu YJ. Ligament structures in the tarsal sinus and canal. Foot Ankle Int. 2013;34(12):1729–36.PubMedCrossRef Li SY, Hou ZD, Zhang P, Li HL, Ding ZH, Liu YJ. Ligament structures in the tarsal sinus and canal. Foot Ankle Int. 2013;34(12):1729–36.PubMedCrossRef
33.
go back to reference Cahill DR. The anatomy and function of the contents of the human tarsal sinus and canal. Anat Rec. 1965;153(1):1–17.PubMedCrossRef Cahill DR. The anatomy and function of the contents of the human tarsal sinus and canal. Anat Rec. 1965;153(1):1–17.PubMedCrossRef
35.
go back to reference Choisne J, Hoch MC, Bawab S, Alexander I, Ringleb SI. The effects of a semi-rigid ankle brace on a simulated isolated subtalar joint instability. J Orthop Res. 2013;31(12):1869–75.PubMedCrossRef Choisne J, Hoch MC, Bawab S, Alexander I, Ringleb SI. The effects of a semi-rigid ankle brace on a simulated isolated subtalar joint instability. J Orthop Res. 2013;31(12):1869–75.PubMedCrossRef
36.
go back to reference Smeets K, Bellemans J, Scheys L, Eijnde BOOT, Claes S. Mechanical Analysis of Extra-Articular Knee Ligaments. Part two: Tendon grafts used for knee ligament reconstruction. Knee. 2017;24:5. Smeets K, Bellemans J, Scheys L, Eijnde BOOT, Claes S. Mechanical Analysis of Extra-Articular Knee Ligaments. Part two: Tendon grafts used for knee ligament reconstruction. Knee. 2017;24:5.
37.
go back to reference Handl M, Drzík M, Cerulli G, Povysil C, Chlpík J, Varga F, Amler E, Trc T. Reconstruction of the anterior cruciate ligament: dynamic strain evaluation of the graft. Knee Surgery Sports Traumatology Arthroscopy Official Journal of the Esska. 2007;15(3):233–41.CrossRef Handl M, Drzík M, Cerulli G, Povysil C, Chlpík J, Varga F, Amler E, Trc T. Reconstruction of the anterior cruciate ligament: dynamic strain evaluation of the graft. Knee Surgery Sports Traumatology Arthroscopy Official Journal of the Esska. 2007;15(3):233–41.CrossRef
38.
go back to reference Fu FH, Herbst E. Editorial commentary: the pivot-shift phenomenon is multifactorial. Arthroscopy J Arthroscopic Related Surgery. 2016;32(6):1063–4.CrossRef Fu FH, Herbst E. Editorial commentary: the pivot-shift phenomenon is multifactorial. Arthroscopy J Arthroscopic Related Surgery. 2016;32(6):1063–4.CrossRef
39.
go back to reference Mittlmeier T, Rammelt S. Update on Subtalar joint instability. Foot Ankle Clin. 2018;23(3):397–413.PubMedCrossRef Mittlmeier T, Rammelt S. Update on Subtalar joint instability. Foot Ankle Clin. 2018;23(3):397–413.PubMedCrossRef
40.
go back to reference Cass JR, Morrey BF, Chao EY. Three-dimensional kinematics of ankle instability following serial sectioning of lateral collateral ligaments. Foot Ankle. 1984;5(3):142–9.PubMedCrossRef Cass JR, Morrey BF, Chao EY. Three-dimensional kinematics of ankle instability following serial sectioning of lateral collateral ligaments. Foot Ankle. 1984;5(3):142–9.PubMedCrossRef
Metadata
Title
Biomechanical comparison of tenodesis reconstruction for subtalar instability: a finite element analysis
Authors
Xu Can
Li Mingqing
Wang Chenggong
Liu Hua
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03693-5

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue