Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Review

Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy – a review

Authors: Julien Freitag, Dan Bates, Richard Boyd, Kiran Shah, Adele Barnard, Leesa Huguenin, Abi Tenen

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Osteoarthritis is a leading cause of pain and disability across the world. With an aging population its prevalence is likely to further increase. Current accepted medical treatment strategies are aimed at symptom control rather than disease modification. Surgical options including joint replacement are not without possible significant complications. A growing interest in the area of regenerative medicine, led by an improved understanding of the role of mesenchymal stem cells in tissue homeostasis and repair, has seen recent focused efforts to explore the potential of stem cell therapies in the active management of symptomatic osteoarthritis. Encouragingly, results of pre-clinical and clinical trials have provided initial evidence of efficacy and indicated safety in the therapeutic use of mesenchymal stem cell therapies for the treatment of knee osteoarthritis. This paper explores the pathogenesis of osteoarthritis and how mesenchymal stem cells may play a role in future management strategies of this disabling condition.
Literature
1.
go back to reference Bitton R. The economic burden of osteoarthritis. Am J Manag Care. 2009;15(8):230–5. Bitton R. The economic burden of osteoarthritis. Am J Manag Care. 2009;15(8):230–5.
2.
go back to reference Fransen M, Bridgett L, March L, et al. The epidemiology of osteoarthritis in Asia. Int J Rheum Dis. 2011;14(2):113–21.PubMed Fransen M, Bridgett L, March L, et al. The epidemiology of osteoarthritis in Asia. Int J Rheum Dis. 2011;14(2):113–21.PubMed
3.
go back to reference Brooks PM. Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. Curr Opin Rheumatol. 2002;14(5):573–7.PubMed Brooks PM. Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. Curr Opin Rheumatol. 2002;14(5):573–7.PubMed
4.
go back to reference Peat G, McCarney R, et al. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis. 2001;60(2):91–7.PubMedPubMedCentral Peat G, McCarney R, et al. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis. 2001;60(2):91–7.PubMedPubMedCentral
5.
go back to reference Gupta S, Hawker GA, et al. The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology. 2005;44(12):1531–7.PubMed Gupta S, Hawker GA, et al. The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology. 2005;44(12):1531–7.PubMed
6.
go back to reference Issa S, Sharma L. Epidemiology of osteoarthritis: an update. Curr Rheum Rep. 2006;8(1):7–15. Issa S, Sharma L. Epidemiology of osteoarthritis: an update. Curr Rheum Rep. 2006;8(1):7–15.
7.
go back to reference Zhou Q, Yang W, Chen J, et al. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol. 2012;8:729–37. Zhou Q, Yang W, Chen J, et al. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol. 2012;8:729–37.
8.
go back to reference Bagga H, Burkhardt D, et al. Long-term effects of intra-articular hyaluronan on synovial fluid in osteoarthritis of the knee. J Rheumatol. 2006;33(5):946–50.PubMed Bagga H, Burkhardt D, et al. Long-term effects of intra-articular hyaluronan on synovial fluid in osteoarthritis of the knee. J Rheumatol. 2006;33(5):946–50.PubMed
9.
go back to reference Abraham NS, El-Serag HB, et al. Cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction and cerebrovascular accident. Aliment Pharmacol Ther. 2007;25(8):913–24.PubMed Abraham NS, El-Serag HB, et al. Cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction and cerebrovascular accident. Aliment Pharmacol Ther. 2007;25(8):913–24.PubMed
10.
go back to reference Baltzer AW, Moser C, et al. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthritis Cartilage. 2009;17(2):152–60.PubMed Baltzer AW, Moser C, et al. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthritis Cartilage. 2009;17(2):152–60.PubMed
11.
go back to reference Cram P, Lu X, et al. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991-2010. JAMA. 2012;308(12):1227–36.PubMedPubMedCentral Cram P, Lu X, et al. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991-2010. JAMA. 2012;308(12):1227–36.PubMedPubMedCentral
13.
go back to reference Carr A, Robertsson O, et al. Knee replacement. Lancet. 2012;379:1331–40.PubMed Carr A, Robertsson O, et al. Knee replacement. Lancet. 2012;379:1331–40.PubMed
14.
go back to reference Kurtz S, Ong K, et al. Projections of primary and revision hip and knee arthroplasty in the united sates from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.PubMed Kurtz S, Ong K, et al. Projections of primary and revision hip and knee arthroplasty in the united sates from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.PubMed
15.
go back to reference Singh JA, Kundukulam J, et al. Early postoperative mortality following joint arthroplasty: a systematic review. J Rheumatol. 2011;38:1507–13.PubMedPubMedCentral Singh JA, Kundukulam J, et al. Early postoperative mortality following joint arthroplasty: a systematic review. J Rheumatol. 2011;38:1507–13.PubMedPubMedCentral
16.
go back to reference Wylde V, Hewlett S, et al. Persistent pain after joint replacement: prevalence, sensory qualities, and postoperative determinants. Pain. 2011;152:566–72.PubMed Wylde V, Hewlett S, et al. Persistent pain after joint replacement: prevalence, sensory qualities, and postoperative determinants. Pain. 2011;152:566–72.PubMed
17.
go back to reference Bourne RB, Chesworth BM, et al. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat. 2010;468:57–63. Bourne RB, Chesworth BM, et al. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat. 2010;468:57–63.
18.
go back to reference SooHoo N, Lieberman J, et al. Factors predicting complication rates following total knee replacement. J Bone Joint Surg Am. 2006;88(3):480–5.PubMed SooHoo N, Lieberman J, et al. Factors predicting complication rates following total knee replacement. J Bone Joint Surg Am. 2006;88(3):480–5.PubMed
19.
go back to reference Buckwalter JA, Mankin HJ. Articular cartilage. Part II: degeneration and osteoarthritis, repair, regeneration and transplantation. J Bone Joint Surg. 1997;79:612–32. Buckwalter JA, Mankin HJ. Articular cartilage. Part II: degeneration and osteoarthritis, repair, regeneration and transplantation. J Bone Joint Surg. 1997;79:612–32.
20.
go back to reference Farnworth L. Osteochondral defects of the knee. Orthopedics. 2000;23(2):146–57.PubMed Farnworth L. Osteochondral defects of the knee. Orthopedics. 2000;23(2):146–57.PubMed
21.
go back to reference Burr DB. Subchondral bone. In: Brandt KD, Lomander S, Doherty M (eds). Osteoarthritis. Oxford: Oxford University Press; 1998. p. 144–56. Burr DB. Subchondral bone. In: Brandt KD, Lomander S, Doherty M (eds). Osteoarthritis. Oxford: Oxford University Press; 1998. p. 144–56.
22.
go back to reference Felson DT, Zhang Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum. 1998;41:1343–55.PubMed Felson DT, Zhang Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum. 1998;41:1343–55.PubMed
23.
go back to reference Wells T, Davidson C, et al. Age-related changes in the composition, the molecular stoichiometry and the stability of proteoglycan aggregates extracted from human articular cartilage. Biochem J. 2003;370:69–79.PubMedPubMedCentral Wells T, Davidson C, et al. Age-related changes in the composition, the molecular stoichiometry and the stability of proteoglycan aggregates extracted from human articular cartilage. Biochem J. 2003;370:69–79.PubMedPubMedCentral
24.
go back to reference Chen AC, Temple MM, Ng DM, TeKoppele JM, et al. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis Rheum. 2002;46:3212–7.PubMed Chen AC, Temple MM, Ng DM, TeKoppele JM, et al. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis Rheum. 2002;46:3212–7.PubMed
25.
go back to reference Loeser R. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteo Cart. 2009;17:971–9. Loeser R. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteo Cart. 2009;17:971–9.
26.
go back to reference Mitchell PG, Magna HA, Reeves LM, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996;97:761–8.PubMedPubMedCentral Mitchell PG, Magna HA, Reeves LM, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996;97:761–8.PubMedPubMedCentral
27.
go back to reference Goldring MB. Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep. 2000;2(6):459–65.PubMed Goldring MB. Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep. 2000;2(6):459–65.PubMed
28.
go back to reference Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001;3:107–13.PubMedPubMedCentral Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001;3:107–13.PubMedPubMedCentral
29.
go back to reference Billinghurst RC, Dahlberg L, Ionescu M, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997;99:1534–45.PubMedPubMedCentral Billinghurst RC, Dahlberg L, Ionescu M, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997;99:1534–45.PubMedPubMedCentral
30.
go back to reference Ohta S, Imai K, Yamashita K, et al. Expression of matrix metalloproteinase 7 (matrilysin) in human osteoarthritic cartilage. Lab Invest. 1998;78:79–87.PubMed Ohta S, Imai K, Yamashita K, et al. Expression of matrix metalloproteinase 7 (matrilysin) in human osteoarthritic cartilage. Lab Invest. 1998;78:79–87.PubMed
31.
go back to reference Amin A, Abramson S. The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol. 1998;10:263–8.PubMed Amin A, Abramson S. The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol. 1998;10:263–8.PubMed
32.
go back to reference Hashimoto S, Ochs RL, Rosen F, et al. Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci U S A. 1998;95:3094–9.PubMedPubMedCentral Hashimoto S, Ochs RL, Rosen F, et al. Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci U S A. 1998;95:3094–9.PubMedPubMedCentral
33.
go back to reference Lippiello L, Hall D, Mankin HJ. Collagen synthesis in normal and osteoarthritic cartilage. J Clin Invest. 1977;59:593–600.PubMedPubMedCentral Lippiello L, Hall D, Mankin HJ. Collagen synthesis in normal and osteoarthritic cartilage. J Clin Invest. 1977;59:593–600.PubMedPubMedCentral
34.
go back to reference Eyre D, McDevitt CA, Billingham MEJ, et al. Biosynthesis of collagen and other matrix proteins by articular cartilage in experimental osteoarthritis. Biochem J. 1980;188:823–37.PubMedPubMedCentral Eyre D, McDevitt CA, Billingham MEJ, et al. Biosynthesis of collagen and other matrix proteins by articular cartilage in experimental osteoarthritis. Biochem J. 1980;188:823–37.PubMedPubMedCentral
35.
go back to reference Collins D, McElligott T. Sulphate (35SO4) uptake by chondrocytes in relation to histological changes in osteoarthritic human articular cartilage. Ann Rheum Dis. 1960;19:318–30.PubMedPubMedCentral Collins D, McElligott T. Sulphate (35SO4) uptake by chondrocytes in relation to histological changes in osteoarthritic human articular cartilage. Ann Rheum Dis. 1960;19:318–30.PubMedPubMedCentral
36.
go back to reference McDevitt CA, Muir H. Biochemical changes in the cartilage of the knee in experimental and natural osteoarthritis in the dog. J Bone Joint Surg Brit. 1976;58:94–101.PubMed McDevitt CA, Muir H. Biochemical changes in the cartilage of the knee in experimental and natural osteoarthritis in the dog. J Bone Joint Surg Brit. 1976;58:94–101.PubMed
37.
go back to reference Mankin HJ, Johnson ME, Lippiello L. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. III. Distribution and metabolism of amino sugar-containing macromolecules. J Bone Joint Surg Am. 1981;63(1):31–139. Mankin HJ, Johnson ME, Lippiello L. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. III. Distribution and metabolism of amino sugar-containing macromolecules. J Bone Joint Surg Am. 1981;63(1):31–139.
38.
go back to reference Mitrovic D, Gruson M, Demignon J, et al. Metabolism of human femoral head cartilage in osteoarthrosis and subcapital fracture. Ann Rheum Dis. 1981;40:18–26.PubMedPubMedCentral Mitrovic D, Gruson M, Demignon J, et al. Metabolism of human femoral head cartilage in osteoarthrosis and subcapital fracture. Ann Rheum Dis. 1981;40:18–26.PubMedPubMedCentral
39.
go back to reference Ryu J, Treadwell BV, Mankin HJ. Biochemical and metabolic abnormalities in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 1984;27:49–57.PubMed Ryu J, Treadwell BV, Mankin HJ. Biochemical and metabolic abnormalities in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 1984;27:49–57.PubMed
40.
go back to reference Aigner T, Dudhia J. Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis: a hypothesis. Ann Rheum Dis. 1997;56:287–91.PubMedPubMedCentral Aigner T, Dudhia J. Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis: a hypothesis. Ann Rheum Dis. 1997;56:287–91.PubMedPubMedCentral
41.
go back to reference Girkontaite I, Frischholz S, Lammi P, et al. Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. Matrix Biol. 1996;15:231–8.PubMed Girkontaite I, Frischholz S, Lammi P, et al. Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. Matrix Biol. 1996;15:231–8.PubMed
42.
go back to reference Barry FP. Mesenchymal stem cell therapy in joint disease. Nov Found Symp. 2003;249:86–9. Barry FP. Mesenchymal stem cell therapy in joint disease. Nov Found Symp. 2003;249:86–9.
43.
go back to reference Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage. 2005;13:845–53.PubMed Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage. 2005;13:845–53.PubMed
44.
go back to reference Fahy N, de Vreis-van Melle ML, Lehmann J, et al. Human osteoarthritis synovium impact chondrogenic differentiation of mesencymal stem cells via macrophage polarization state. Osteoarthritis Cartilage. 2014;22(8):1167–75.PubMed Fahy N, de Vreis-van Melle ML, Lehmann J, et al. Human osteoarthritis synovium impact chondrogenic differentiation of mesencymal stem cells via macrophage polarization state. Osteoarthritis Cartilage. 2014;22(8):1167–75.PubMed
45.
go back to reference Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625–35.PubMed Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625–35.PubMed
46.
go back to reference Murphy JM, Dixon K, Beck S, et al. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum. 2002;46:704–13.PubMed Murphy JM, Dixon K, Beck S, et al. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum. 2002;46:704–13.PubMed
47.
go back to reference Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol. 2013;9:584–94.PubMed Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol. 2013;9:584–94.PubMed
48.
go back to reference Barry FP. Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today. 2003;69:250–6.PubMed Barry FP. Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today. 2003;69:250–6.PubMed
49.
go back to reference Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arhtritis Res Ther. 2009;11(3):227. Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arhtritis Res Ther. 2009;11(3):227.
50.
go back to reference Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001;44:1237–47.PubMed Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001;44:1237–47.PubMed
51.
52.
go back to reference Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568–84.PubMed Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568–84.PubMed
53.
go back to reference Arinzeh TL. Mesenchymal stem cells for bone repair: preclinical studies and potential orthopaedic applications. Foot Ankle Clin. 2005;10(4):651–65.PubMed Arinzeh TL. Mesenchymal stem cells for bone repair: preclinical studies and potential orthopaedic applications. Foot Ankle Clin. 2005;10(4):651–65.PubMed
54.
go back to reference Noel D, Djouad F, Jorgense C. Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr Opin Investig Drugs. 2002;3(7):1000–4.PubMed Noel D, Djouad F, Jorgense C. Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr Opin Investig Drugs. 2002;3(7):1000–4.PubMed
55.
go back to reference Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner. 2004;19:463–70. Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner. 2004;19:463–70.
56.
go back to reference Longobardi L, O'Rear L, Aakula S, et al. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner. 2006;21:626–36. Longobardi L, O'Rear L, Aakula S, et al. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner. 2006;21:626–36.
57.
go back to reference Bosnakovski D, Mizuno M, Kim G, et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 2005;319:243–53.PubMed Bosnakovski D, Mizuno M, Kim G, et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 2005;319:243–53.PubMed
58.
go back to reference Knippenberg M, Helder MN, Zandieh Doulabi B, et al. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res. 2006;342:902–8. Knippenberg M, Helder MN, Zandieh Doulabi B, et al. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res. 2006;342:902–8.
59.
go back to reference Solchaga LA, Temenoff JS, Gao J, et al. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis Cartilage. 2005;13:297–309.PubMed Solchaga LA, Temenoff JS, Gao J, et al. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis Cartilage. 2005;13:297–309.PubMed
60.
go back to reference Caplan A. What are MSCs therapeutic? New data: new insight. J Pathol. 2009;217:318–24.PubMed Caplan A. What are MSCs therapeutic? New data: new insight. J Pathol. 2009;217:318–24.PubMed
61.
go back to reference Djouad F, Bouffi C, Ghannam S, et al. Mesenchymal stem cell: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol. 2009;5:392–9.PubMed Djouad F, Bouffi C, Ghannam S, et al. Mesenchymal stem cell: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol. 2009;5:392–9.PubMed
63.
go back to reference Nakagami H, Morishita R, et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb. 2006;13(2):77.PubMed Nakagami H, Morishita R, et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb. 2006;13(2):77.PubMed
64.
go back to reference Caplan AI. Mesenchymal stem cells. J Orth Res. 1991;9(5):641–50. Caplan AI. Mesenchymal stem cells. J Orth Res. 1991;9(5):641–50.
65.
go back to reference Wu L, Leijten JC, Georgi N, et al. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng. 2011;17(9-10):1425–36. Wu L, Leijten JC, Georgi N, et al. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng. 2011;17(9-10):1425–36.
66.
go back to reference de Windt T, Saris DB, Slaper-Cortenbach IC, et al. Direct cell–cell contact with chondrocytes is a key mechanism in multipotent mesenchymal stromal cell-mediated chondrogenesis. Tissue Eng Part A. 2015;21(19-20):2536–47.PubMed de Windt T, Saris DB, Slaper-Cortenbach IC, et al. Direct cell–cell contact with chondrocytes is a key mechanism in multipotent mesenchymal stromal cell-mediated chondrogenesis. Tissue Eng Part A. 2015;21(19-20):2536–47.PubMed
67.
go back to reference Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–7.PubMed Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–7.PubMed
68.
go back to reference Diekman B et al. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage matrix. Tissue Eng. 2010;16(2):523–33. Diekman B et al. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage matrix. Tissue Eng. 2010;16(2):523–33.
69.
go back to reference Kern S, Eichler JS, Kluter H, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.PubMed Kern S, Eichler JS, Kluter H, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.PubMed
70.
go back to reference Lo Surdo J, Bauer SR. Quantitative approaches to detect done and passage differences in adipogenic potential and clonogenicity in human bone marrow derived mesenchymal stem cells. Tissue Eng. 2012;18(11):1–13. Lo Surdo J, Bauer SR. Quantitative approaches to detect done and passage differences in adipogenic potential and clonogenicity in human bone marrow derived mesenchymal stem cells. Tissue Eng. 2012;18(11):1–13.
71.
go back to reference Dominici M, Le Blanc K, et al. Minimal criteria for defining mulipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315.PubMed Dominici M, Le Blanc K, et al. Minimal criteria for defining mulipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315.PubMed
72.
go back to reference Peng L et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008;17(4):761–74.PubMed Peng L et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008;17(4):761–74.PubMed
73.
go back to reference Alvarez-Viejo M, et al. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Trans Proc. 2013;45(1):434–439. Alvarez-Viejo M, et al. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Trans Proc. 2013;45(1):434–439.
74.
go back to reference Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.PubMed Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.PubMed
75.
go back to reference Lee RH et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14(4-6):311–24.PubMed Lee RH et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14(4-6):311–24.PubMed
76.
77.
go back to reference De Ugarte DA et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101–9.PubMed De Ugarte DA et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101–9.PubMed
78.
go back to reference Baksh D, Yao R, Tuan R. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25(6):1384–92.PubMed Baksh D, Yao R, Tuan R. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25(6):1384–92.PubMed
79.
go back to reference Nekanti U et al. Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev. 2010;19(1):117–30.PubMed Nekanti U et al. Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev. 2010;19(1):117–30.PubMed
80.
go back to reference Subramanian A et al. Human umbilical cord Wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem. 2012;113(6):1886–95.PubMed Subramanian A et al. Human umbilical cord Wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem. 2012;113(6):1886–95.PubMed
81.
go back to reference Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31:890–6.PubMed Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31:890–6.PubMed
82.
go back to reference Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.PubMed Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.PubMed
83.
go back to reference Brittberg M, Nilsson A, Lindahl A, et al. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res. 1996;326:270–83. Brittberg M, Nilsson A, Lindahl A, et al. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res. 1996;326:270–83.
84.
go back to reference Chiang H et al. Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. J Orthop Res. 2005;23(3):584–93.PubMed Chiang H et al. Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. J Orthop Res. 2005;23(3):584–93.PubMed
85.
go back to reference Rahfoth B, Weisser J, Sternkopf F, et al. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage. 1998;6:50–65.PubMed Rahfoth B, Weisser J, Sternkopf F, et al. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage. 1998;6:50–65.PubMed
86.
go back to reference Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34. Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.
87.
go back to reference Ahsan T, Lottman LM, Harwood F, et al. Integrative cartilage repair: inhibition by beta-aminopropionitrile. J Orthop Res. 1999;17:850–7.PubMed Ahsan T, Lottman LM, Harwood F, et al. Integrative cartilage repair: inhibition by beta-aminopropionitrile. J Orthop Res. 1999;17:850–7.PubMed
88.
go back to reference von der Mark K, Gauss V, von der Mark H, et al. Relationship between cell shape and type of collagen synthesized as chondrocytes lose their cartilage phenotype in culture. Nature. 1977;267:531–2.PubMed von der Mark K, Gauss V, von der Mark H, et al. Relationship between cell shape and type of collagen synthesized as chondrocytes lose their cartilage phenotype in culture. Nature. 1977;267:531–2.PubMed
89.
go back to reference Marlovits S, Hombauer M, Truppe M. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg Br. 2004;86:286–95.PubMed Marlovits S, Hombauer M, Truppe M. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg Br. 2004;86:286–95.PubMed
90.
go back to reference Roberts S et al. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther. 2003;5(1):60–73. Roberts S et al. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther. 2003;5(1):60–73.
91.
go back to reference Steadman JR, Brigss KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chodnral defects of the knee: average 11-year follow-up, arthroscopy. J Arthro Relat Surg. 2003;19(5):477–84. Steadman JR, Brigss KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chodnral defects of the knee: average 11-year follow-up, arthroscopy. J Arthro Relat Surg. 2003;19(5):477–84.
92.
go back to reference Jakobsen RB, Engebtretsen L, Slauterbeck JR. An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am. 2005;87(10):2232–9.PubMed Jakobsen RB, Engebtretsen L, Slauterbeck JR. An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am. 2005;87(10):2232–9.PubMed
93.
go back to reference Magnussen RA, Dunn WR, Carey JL, et al. Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res. 2008;466(4):952–62.PubMedPubMedCentral Magnussen RA, Dunn WR, Carey JL, et al. Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res. 2008;466(4):952–62.PubMedPubMedCentral
94.
go back to reference Hunt S, Sherman O. Arthroscopic treatment of osteochondral lesions of the talus with correlation of outcome scoring systems. J Arthro Rel Surg. 2003;19(4):360–7. Hunt S, Sherman O. Arthroscopic treatment of osteochondral lesions of the talus with correlation of outcome scoring systems. J Arthro Rel Surg. 2003;19(4):360–7.
95.
go back to reference Mithoefer K, McADmas T, Willians RJ, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: and evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–6.PubMed Mithoefer K, McADmas T, Willians RJ, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: and evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–6.PubMed
96.
go back to reference Steinwachs MR, Guggi T, Kreuz PC. Marrow stimulation techniques. Injury. 2008;39(1):S26–31.PubMed Steinwachs MR, Guggi T, Kreuz PC. Marrow stimulation techniques. Injury. 2008;39(1):S26–31.PubMed
97.
go back to reference Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints. J Bone Joint Surg. 2003;85(2):25–32.PubMed Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints. J Bone Joint Surg. 2003;85(2):25–32.PubMed
98.
go back to reference Bodo G, Hangody L, Szabo Z, et al. Arthroscopic autologous osteochondral mosaicplasty for the treatment of subchondral cystic lesion in the medial femoral condyle in a horse. Acta Vet Hung. 2000;48:343–54.PubMed Bodo G, Hangody L, Szabo Z, et al. Arthroscopic autologous osteochondral mosaicplasty for the treatment of subchondral cystic lesion in the medial femoral condyle in a horse. Acta Vet Hung. 2000;48:343–54.PubMed
99.
go back to reference Wohl G, Goplen G, Ford J, et al. Mechanical integrity of subchondral bone in osteochondral autografts and allografts. Can J Surg. 1998;41:228–33.PubMedPubMedCentral Wohl G, Goplen G, Ford J, et al. Mechanical integrity of subchondral bone in osteochondral autografts and allografts. Can J Surg. 1998;41:228–33.PubMedPubMedCentral
100.
go back to reference Bentley G, Biant LC, Carrington RW. A prospective, randomized comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br. 2003;85(2):223–30.PubMed Bentley G, Biant LC, Carrington RW. A prospective, randomized comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br. 2003;85(2):223–30.PubMed
101.
go back to reference Im GI, Kim DY, Shin JH, et al. Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg Br. 2001;83:289–94.PubMed Im GI, Kim DY, Shin JH, et al. Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg Br. 2001;83:289–94.PubMed
102.
go back to reference Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, Giavaresi G, Fini M, Giardino R. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng Part C Methods. 2009;15:647–58.PubMed Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, Giavaresi G, Fini M, Giardino R. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng Part C Methods. 2009;15:647–58.PubMed
103.
go back to reference Cui L, Wu Y, Cen L, et al. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials. 2009;30(14):2683–93.PubMed Cui L, Wu Y, Cen L, et al. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials. 2009;30(14):2683–93.PubMed
104.
go back to reference Dragoo J et al. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng. 2007;13(7):1615–21.PubMed Dragoo J et al. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng. 2007;13(7):1615–21.PubMed
105.
go back to reference Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76:579–92.PubMed Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76:579–92.PubMed
106.
go back to reference Liu Y, Shu XZ, Prestwich GD. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng. 2006;12:3405–16.PubMed Liu Y, Shu XZ, Prestwich GD. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng. 2006;12:3405–16.PubMed
107.
go back to reference Alfaqeh H, Norhamdan MY, Chua KH, et al. Cell based therapy for osteoarthritis in a sheep model: gross and histological assessment. Med J Malaysia. 2008;63(Suppl A):37–8.PubMed Alfaqeh H, Norhamdan MY, Chua KH, et al. Cell based therapy for osteoarthritis in a sheep model: gross and histological assessment. Med J Malaysia. 2008;63(Suppl A):37–8.PubMed
108.
go back to reference Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10:199–206.PubMed Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10:199–206.PubMed
109.
go back to reference Nejadnik H, Hui JH, Feng Choong EP, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38:1110–6.PubMed Nejadnik H, Hui JH, Feng Choong EP, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38:1110–6.PubMed
110.
go back to reference Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–72.PubMed Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–72.PubMed
111.
go back to reference Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res. 2005;8(1):11–7.PubMed Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res. 2005;8(1):11–7.PubMed
112.
go back to reference van Buul GM, Siebelt M, Leijs MJ, et al. Mesenchymal stem cells reduce pain but no degenerative changes in a mono-iodoacetate rat model of osteoarthritis. J Orthop Res. 2014;32(9):1167–74.PubMed van Buul GM, Siebelt M, Leijs MJ, et al. Mesenchymal stem cells reduce pain but no degenerative changes in a mono-iodoacetate rat model of osteoarthritis. J Orthop Res. 2014;32(9):1167–74.PubMed
113.
go back to reference Murphy JM, Fink DJ, Hunziker EB, et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48:3464–74.PubMed Murphy JM, Fink DJ, Hunziker EB, et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48:3464–74.PubMed
114.
go back to reference Lee KB, Hui JH, Song IC, Ardany L, et al. Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. Stem Cell. 2007;25:2964–71. Lee KB, Hui JH, Song IC, Ardany L, et al. Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. Stem Cell. 2007;25:2964–71.
115.
go back to reference Saw KY, Hussin P, Loke SC, et al. Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy. 2009;25(12):1391–400.PubMed Saw KY, Hussin P, Loke SC, et al. Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy. 2009;25(12):1391–400.PubMed
116.
go back to reference Black L, Gaynor J, Adams C, et al. Effect of intra-articular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther. 2008;9:192–200.PubMed Black L, Gaynor J, Adams C, et al. Effect of intra-articular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther. 2008;9:192–200.PubMed
117.
go back to reference Centeno C, Busse D, Kisiday J, et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–53.PubMed Centeno C, Busse D, Kisiday J, et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–53.PubMed
118.
go back to reference Centeno C, Kisiday J, Freeman M, et al. Partial regeneration of the human hip via autologous bone marrow nucleated cell transfer: a case study. Pain Physician. 2006;9:253–6.PubMed Centeno C, Kisiday J, Freeman M, et al. Partial regeneration of the human hip via autologous bone marrow nucleated cell transfer: a case study. Pain Physician. 2006;9:253–6.PubMed
119.
go back to reference Centeno C, Schultz J, Cheever M. Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell. 2011;5(1):81–93. Centeno C, Schultz J, Cheever M. Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell. 2011;5(1):81–93.
120.
go back to reference Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose derived stem cells: a case series. J Med Case Rep. 2001;5:296. Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose derived stem cells: a case series. J Med Case Rep. 2001;5:296.
121.
go back to reference Kuroda R, Ishida K, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage. 2007;15:226–31.PubMed Kuroda R, Ishida K, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage. 2007;15:226–31.PubMed
122.
go back to reference Emadedin M, Aghdami N, Taghiyar L, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422–8.PubMed Emadedin M, Aghdami N, Taghiyar L, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422–8.PubMed
123.
go back to reference Saw KY et al. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29(4):684–94.PubMed Saw KY et al. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29(4):684–94.PubMed
124.
go back to reference Vangsness CT, Farr J, Boyd J, et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy. J Bone Joint Surg. 2014;96(2):90–8.PubMed Vangsness CT, Farr J, Boyd J, et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy. J Bone Joint Surg. 2014;96(2):90–8.PubMed
125.
go back to reference Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof of concept clinical trial. Stem Cells. 2014;32(5):1254–66.PubMed Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof of concept clinical trial. Stem Cells. 2014;32(5):1254–66.PubMed
126.
go back to reference Vega, Aurelio, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.PubMed Vega, Aurelio, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.PubMed
127.
go back to reference Davatchi F, Sadeghi-Abdollahi B, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011;14(2):211–5.PubMed Davatchi F, Sadeghi-Abdollahi B, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011;14(2):211–5.PubMed
129.
go back to reference Tucker JD, Ericksen JJ, Goetz LL, et al. Should clinical studies involving “regenerative injection therapy”, strive to incorporate a triad of outcome measures instead of only including clinical outcome measures? Osteoarthritis Cartilage. 2014;22(6):715–7.PubMed Tucker JD, Ericksen JJ, Goetz LL, et al. Should clinical studies involving “regenerative injection therapy”, strive to incorporate a triad of outcome measures instead of only including clinical outcome measures? Osteoarthritis Cartilage. 2014;22(6):715–7.PubMed
130.
go back to reference Qureshi A, Chaoji V, Maiguel D, et al. Proteomic and phospho-proteomic profile of human platelets in Basal, resting state: insights into integrin signaling. PLoS One. 2009;4:e7627.PubMedPubMedCentral Qureshi A, Chaoji V, Maiguel D, et al. Proteomic and phospho-proteomic profile of human platelets in Basal, resting state: insights into integrin signaling. PLoS One. 2009;4:e7627.PubMedPubMedCentral
131.
go back to reference Zhu Y et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthritis Cartilage. 2013;21(11):1627–37.PubMed Zhu Y et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthritis Cartilage. 2013;21(11):1627–37.PubMed
132.
go back to reference Ng F et al. PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 2008;112(2):295–307.PubMed Ng F et al. PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 2008;112(2):295–307.PubMed
133.
go back to reference Song QH et al. TGF- (beta) 1 and FGF-2 mRNA expression during fibroblast wound healing. J Clin Pathol. 2002;55(3):164. Song QH et al. TGF- (beta) 1 and FGF-2 mRNA expression during fibroblast wound healing. J Clin Pathol. 2002;55(3):164.
134.
go back to reference Mifune Y, Matsumoto T, Takayama K, et al. The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair. Osteoarthritis Cartilage. 2013;21(1):175–85.PubMed Mifune Y, Matsumoto T, Takayama K, et al. The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair. Osteoarthritis Cartilage. 2013;21(1):175–85.PubMed
135.
go back to reference Weiss S, Hennig T, Bock R, et al. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol. 2010;223:84–93.PubMed Weiss S, Hennig T, Bock R, et al. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol. 2010;223:84–93.PubMed
136.
go back to reference Koh YG, Jo SB, Kwon OR, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy. 2013;29:1e8. Koh YG, Jo SB, Kwon OR, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy. 2013;29:1e8.
137.
go back to reference Xie X, Wang Y, Zhao C, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33:7008e18. Xie X, Wang Y, Zhao C, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33:7008e18.
138.
go back to reference Haleem AM, Singergy AA, Sabry D, et al. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells trans- planted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1:253e61. Haleem AM, Singergy AA, Sabry D, et al. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells trans- planted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1:253e61.
139.
go back to reference Lee HR, Park KM, Joung YK, Park KD, et al. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. J Control Release. 2012;159(3):332–7.PubMed Lee HR, Park KM, Joung YK, Park KD, et al. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. J Control Release. 2012;159(3):332–7.PubMed
140.
go back to reference Giannini S, Buda R, Cavallo M, et al. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury. 2010;41:1196e203. Giannini S, Buda R, Cavallo M, et al. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury. 2010;41:1196e203.
141.
go back to reference Maniwa S, Ochi M, Motomura T, et al. Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Acta Orthop Scand. 2001;72:299–303.PubMed Maniwa S, Ochi M, Motomura T, et al. Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Acta Orthop Scand. 2001;72:299–303.PubMed
142.
go back to reference Matsiko A et al. Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering. J Mech Behav Biomed Mater. 2012;11:41–52.PubMed Matsiko A et al. Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering. J Mech Behav Biomed Mater. 2012;11:41–52.PubMed
143.
go back to reference Zhu H et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells. 2006;24(4):928–35.PubMed Zhu H et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells. 2006;24(4):928–35.PubMed
144.
go back to reference Toole, BP. Hyaluronan in morphogenesis. Seminars in cell & developmental biology. Academic Press. 2001;12(2):79–87. Toole, BP. Hyaluronan in morphogenesis. Seminars in cell & developmental biology. Academic Press. 2001;12(2):79–87.
145.
go back to reference Snyder TN et al. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J Biol Eng. 2014;8:10.PubMedPubMedCentral Snyder TN et al. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J Biol Eng. 2014;8:10.PubMedPubMedCentral
147.
go back to reference Rubio D, Carcia-Castro J, Martin M, et al. Spontaneous human adult stem cell transformation. Cancer Res. 2005;65:3035.PubMed Rubio D, Carcia-Castro J, Martin M, et al. Spontaneous human adult stem cell transformation. Cancer Res. 2005;65:3035.PubMed
148.
go back to reference Rubio D, Carcia-Castro J, Martin M, et al. Retraction: Spontaneous human adult stem cell transformation. Cancer Res. 2010;70:6682. Rubio D, Carcia-Castro J, Martin M, et al. Retraction: Spontaneous human adult stem cell transformation. Cancer Res. 2010;70:6682.
149.
go back to reference Rosland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009;69:5531. Rosland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009;69:5531.
150.
go back to reference Torsvik A, Rosland GV, Svendsen A, et al. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross contamination: putting the research field on track – letter. Cancer Res. 2010;70:6393.PubMed Torsvik A, Rosland GV, Svendsen A, et al. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross contamination: putting the research field on track – letter. Cancer Res. 2010;70:6393.PubMed
151.
go back to reference Pan Q, Fouraschen SM, de Ruiter PE, et al. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cell. Exp Biol Med. 2014;239(1):105–15. Pan Q, Fouraschen SM, de Ruiter PE, et al. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cell. Exp Biol Med. 2014;239(1):105–15.
152.
go back to reference Bernardo M, Zaffaroni N, Novara F, et al. Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 2007;67:9142.PubMed Bernardo M, Zaffaroni N, Novara F, et al. Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 2007;67:9142.PubMed
153.
go back to reference Lalu ML, McIntyre L, et al. Safety of cell therapy with mesenchymal stromal cells (safe cell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7(10):e47559.PubMedPubMedCentral Lalu ML, McIntyre L, et al. Safety of cell therapy with mesenchymal stromal cells (safe cell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7(10):e47559.PubMedPubMedCentral
154.
go back to reference Peeters CM, Leijs MJ, et al. Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteo Cartilage. 2013;21(10):1465–73. Peeters CM, Leijs MJ, et al. Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteo Cartilage. 2013;21(10):1465–73.
155.
go back to reference Bielecki TM, Gazdzik TS, Arendt J, et al. Antibacterial effect of autologous platelet gel enriched with growth factors and other active substances: an in vitro study. J Bone Joint Surg Br. 2007;89:417e20. Bielecki TM, Gazdzik TS, Arendt J, et al. Antibacterial effect of autologous platelet gel enriched with growth factors and other active substances: an in vitro study. J Bone Joint Surg Br. 2007;89:417e20.
Metadata
Title
Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy – a review
Authors
Julien Freitag
Dan Bates
Richard Boyd
Kiran Shah
Adele Barnard
Leesa Huguenin
Abi Tenen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-1085-9

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue