Skip to main content
Top
Published in: BMC Public Health 1/2017

Open Access 01-12-2017 | Research article

Effect of major school playground reconstruction on physical activity and sedentary behaviour: Camden active spaces

Authors: Mark Hamer, Daniel Aggio, Georgina Knock, Courtney Kipps, Aparna Shankar, Lee Smith

Published in: BMC Public Health | Issue 1/2017

Login to get access

Abstract

Background

The physical school environment is a promising setting to increase children’s physical activity although robust evidence is sparse. We examined the effects of major playground reconstruction on physical activity and sedentary time in primary schools using a quasi-experimental design (comparison group pre-test/post-test design).

Methods

Five experimental and two control schools from deprived areas of inner city London were recruited at baseline. Main outcome was physical activity and sedentary time measured from objective monitoring (Actigraph accelerometer) at one year follow up. Pupils’ impressions of the new playground were qualitatively assessed post construction.

Results

A total of 347 pupils (mean age = 8 years, 55% boys; 36% Caucasian) were recruited into the study at baseline; 303 provided valid baseline Actigraph data. Of those, 231 (76%) completed follow-up (n = 169 intervention; n = 62 control) and 77.4% of the sample recorded at least 4 days of Actigraph wear. In mixed models adjusted for age, sex, ethnicity, ratio activity or sedentary/wear time at baseline, wear time at follow up, and school, no differences were observed in total moderate – vigorous activity (B = −1.4, 95% CI, −7.1, 4.2 min/d), light activity (B = 4.1, 95% CI, −17.9, 26.1), or sedentary time (B = −3.8, 95% CI, −29.2, 21.6 min/d) between groups. There were significant age interactions for sedentary (p = 0.002) and light intensity physical activity (p = 0.008). We observed significant reductions in total sedentary (−28.0, 95% CI, −1.9, −54.1 min/d, p = 0.037) and increases in total light intensity activity (24.6, 95% CI, 0.3, 48.9 min/d, p = 0.047) for children aged under 9 yrs. old in the intervention.

Conclusion

Major playground reconstruction had limited effects on physical activity, but reduced sedentary time was observed in younger children. Qualitative data suggested that the children enjoyed the new playgrounds and experienced a perceived positive change in well-being and social interactions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral
2.
go back to reference Ekelund U, Luan J, Sherar LB, et al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307:704–12.CrossRefPubMedPubMedCentral Ekelund U, Luan J, Sherar LB, et al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307:704–12.CrossRefPubMedPubMedCentral
3.
go back to reference Telama R. Tracking of physical activity from childhood to adulthood: a review. Obesity Facts. 2009;2:187–95.CrossRefPubMed Telama R. Tracking of physical activity from childhood to adulthood: a review. Obesity Facts. 2009;2:187–95.CrossRefPubMed
4.
go back to reference Smith L, Gardner B, Hamer M. Childhood correlates of adult TV viewing time: a 32-year follow-up of the 1970 British cohort study. J Epidemiol Community Health. 2015;69(4):309–13.CrossRefPubMed Smith L, Gardner B, Hamer M. Childhood correlates of adult TV viewing time: a 32-year follow-up of the 1970 British cohort study. J Epidemiol Community Health. 2015;69(4):309–13.CrossRefPubMed
6.
go back to reference Department of Health. Start Active Stay Active: A report on physical activity for health from the four home countries’ Chief Medical Officers (UK). July 2011. Department of Health. Start Active Stay Active: A report on physical activity for health from the four home countries’ Chief Medical Officers (UK). July 2011.
7.
go back to reference Ding D, Sallis JF, Kerr J, et al. Neighborhood environment and physical activity among youth a review. Am J Prev Med. 2011;41:442–55.CrossRefPubMed Ding D, Sallis JF, Kerr J, et al. Neighborhood environment and physical activity among youth a review. Am J Prev Med. 2011;41:442–55.CrossRefPubMed
8.
go back to reference Sallis JF, Cerin E, Conway TL, et al. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet. 2016;387(10034):2207–17.CrossRefPubMed Sallis JF, Cerin E, Conway TL, et al. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet. 2016;387(10034):2207–17.CrossRefPubMed
9.
go back to reference Dobbins M, Husson H, DeCorby K, et al. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651. Dobbins M, Husson H, DeCorby K, et al. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651.
10.
go back to reference Metcalf B, Henley W, Wilkin T. Effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). BMJ. 2012;345:e5888.CrossRefPubMed Metcalf B, Henley W, Wilkin T. Effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). BMJ. 2012;345:e5888.CrossRefPubMed
11.
go back to reference Kipping RR, Howe LD, Jago R, et al. Effect of intervention aimed at increasing physical activity, reducing sedentary behaviour, and increasing fruit and vegetable consumption in children: active for life year 5 (AFLY5) school based cluster randomised controlled trial. BMJ. 2014;348:g3256.CrossRefPubMedPubMedCentral Kipping RR, Howe LD, Jago R, et al. Effect of intervention aimed at increasing physical activity, reducing sedentary behaviour, and increasing fruit and vegetable consumption in children: active for life year 5 (AFLY5) school based cluster randomised controlled trial. BMJ. 2014;348:g3256.CrossRefPubMedPubMedCentral
12.
go back to reference Morton KL, Atkin AJ, Corder K, et al. The school environment and adolescent physical activity and sedentary behaviour: a mixed-studies systematic review. Obes Rev. 2016;17(2):142–58.CrossRefPubMed Morton KL, Atkin AJ, Corder K, et al. The school environment and adolescent physical activity and sedentary behaviour: a mixed-studies systematic review. Obes Rev. 2016;17(2):142–58.CrossRefPubMed
13.
go back to reference Broekhuizen K, Scholten AM, de Vries SI. The value of (pre)school playgrounds for children's physical activity level: a systematic review. Int J Behav Nutr Phys Act. 2014 May 3;11:59.CrossRefPubMedPubMedCentral Broekhuizen K, Scholten AM, de Vries SI. The value of (pre)school playgrounds for children's physical activity level: a systematic review. Int J Behav Nutr Phys Act. 2014 May 3;11:59.CrossRefPubMedPubMedCentral
14.
go back to reference Parrish AM, Okely AD, Stanley RM, et al. The effect of school recess interventions on physical activity : a systematic review. Sports Med. 2013;43(4):287–99.CrossRefPubMed Parrish AM, Okely AD, Stanley RM, et al. The effect of school recess interventions on physical activity : a systematic review. Sports Med. 2013;43(4):287–99.CrossRefPubMed
15.
go back to reference Brink LA, Nigg CR, Lampe SM, et al. Influence of schoolyard renovations on children's physical activity: the learning landscapes program. Am J Public Health. 2010;100(9):1672–8.CrossRefPubMedPubMedCentral Brink LA, Nigg CR, Lampe SM, et al. Influence of schoolyard renovations on children's physical activity: the learning landscapes program. Am J Public Health. 2010;100(9):1672–8.CrossRefPubMedPubMedCentral
16.
go back to reference Smith L, Kipps C, Aggio D, et al. Camden active spaces: does the construction of active school playgrounds influence children's physical activity levels? A longitudinal quasi-experiment protocol. BMJ Open. 2014;4(8):e005729.CrossRefPubMedPubMedCentral Smith L, Kipps C, Aggio D, et al. Camden active spaces: does the construction of active school playgrounds influence children's physical activity levels? A longitudinal quasi-experiment protocol. BMJ Open. 2014;4(8):e005729.CrossRefPubMedPubMedCentral
17.
go back to reference Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psych. 2006;3:77–101.CrossRef Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psych. 2006;3:77–101.CrossRef
18.
go back to reference Butte NF, Ekelund U, Westerterp KR. Assessing physical activity using wearable monitors: measures of physical activity. Med Sci Sports Exerc. 2012;44(1 Suppl 1):S5–12.CrossRefPubMed Butte NF, Ekelund U, Westerterp KR. Assessing physical activity using wearable monitors: measures of physical activity. Med Sci Sports Exerc. 2012;44(1 Suppl 1):S5–12.CrossRefPubMed
20.
go back to reference Pawlowski CS, Andersen HB, Troelsen J, Schipperijn J. Children's physical activity behavior during school recess: a pilot study using GPS, accelerometer, participant observation, and go-along interview. PLoS One. 2016;11(2):e0148786.CrossRefPubMedPubMedCentral Pawlowski CS, Andersen HB, Troelsen J, Schipperijn J. Children's physical activity behavior during school recess: a pilot study using GPS, accelerometer, participant observation, and go-along interview. PLoS One. 2016;11(2):e0148786.CrossRefPubMedPubMedCentral
21.
go back to reference D'Haese S, Van Dyck D, De Bourdeaudhuij I, et al. Effectiveness and feasibility of lowering playground density during recess to promote physical activity and decrease sedentary time at primary school. BMC Public Health. 2013;13:1154.CrossRefPubMedPubMedCentral D'Haese S, Van Dyck D, De Bourdeaudhuij I, et al. Effectiveness and feasibility of lowering playground density during recess to promote physical activity and decrease sedentary time at primary school. BMC Public Health. 2013;13:1154.CrossRefPubMedPubMedCentral
22.
go back to reference Zask A, van Beurden E, Barnett L, et al. Active school playgrounds- myth or reality. Results of the ‘move it groove it’ project. Prev Med. 2000;33:402–8.CrossRef Zask A, van Beurden E, Barnett L, et al. Active school playgrounds- myth or reality. Results of the ‘move it groove it’ project. Prev Med. 2000;33:402–8.CrossRef
23.
go back to reference Stratton G. Promoting children's physical activity in primary school: an intervention study using playground markings. Ergonomics. 2000;43:1538–46.CrossRefPubMed Stratton G. Promoting children's physical activity in primary school: an intervention study using playground markings. Ergonomics. 2000;43:1538–46.CrossRefPubMed
24.
go back to reference Stratton G, Mullan E. The effect of multicolour playground markings on children's physical activity level during recess. Prev Med. 2000;41:828–33.CrossRef Stratton G, Mullan E. The effect of multicolour playground markings on children's physical activity level during recess. Prev Med. 2000;41:828–33.CrossRef
25.
go back to reference Blaes A, Ridgers ND, Aucouturier J, et al. Effects of a playground marking intervention on school recess physical activity in French children. Prev Med. 2013 Nov;57(5):580–4.CrossRefPubMed Blaes A, Ridgers ND, Aucouturier J, et al. Effects of a playground marking intervention on school recess physical activity in French children. Prev Med. 2013 Nov;57(5):580–4.CrossRefPubMed
26.
go back to reference Cardon G, van Cauwenberghe E, Labarque V, et al. The contribution of playground factors in explaining children's PA during recess. Int J Behav Nutr Phys Act. 2008;5:11.CrossRefPubMedPubMedCentral Cardon G, van Cauwenberghe E, Labarque V, et al. The contribution of playground factors in explaining children's PA during recess. Int J Behav Nutr Phys Act. 2008;5:11.CrossRefPubMedPubMedCentral
27.
go back to reference Scruggs PW, Beveridge SK, Watson DL. Increasing children's school time physical activity using structured fitness breaks. Pediatr Exerc Sci. 2003;15:156–69.CrossRef Scruggs PW, Beveridge SK, Watson DL. Increasing children's school time physical activity using structured fitness breaks. Pediatr Exerc Sci. 2003;15:156–69.CrossRef
28.
go back to reference Verstraete SJM, Cardon GM, De C, et al. Increasing children's physical activity levels during recess in elementary schools: the effects of providing game equipment. Eur J Pub Health. 2006;16:415–9.CrossRef Verstraete SJM, Cardon GM, De C, et al. Increasing children's physical activity levels during recess in elementary schools: the effects of providing game equipment. Eur J Pub Health. 2006;16:415–9.CrossRef
29.
go back to reference Nielsen G, Bugge A, Hermansen B, et al. School playground facilities as a determinant of children's daily activity: a cross-sectional study of Danish primary school children. J Phys Activ Health. 2012;9:104–14.CrossRef Nielsen G, Bugge A, Hermansen B, et al. School playground facilities as a determinant of children's daily activity: a cross-sectional study of Danish primary school children. J Phys Activ Health. 2012;9:104–14.CrossRef
30.
go back to reference McKenzie TL, Sallis JF, Elder JP, et al. Physical activity levels and prompts in young children at recess: a 2-years study of a bi-ethnic sample. Res Q Excerc Sport. 1997;68:195–202.CrossRef McKenzie TL, Sallis JF, Elder JP, et al. Physical activity levels and prompts in young children at recess: a 2-years study of a bi-ethnic sample. Res Q Excerc Sport. 1997;68:195–202.CrossRef
31.
go back to reference Christiansen LB, Toftager M, Pawlowski CS, Andersen HB, Ersbøll AK, Troelsen J. Schoolyard upgrade in a randomized controlled study design-how are school interventions associated with adolescents' perception of opportunities and recess physical activity. Health Educ Res. 2017 Jan 23. pii: cyw058. doi: 10.1093/her/cyw058. [Epub ahead of print]. Christiansen LB, Toftager M, Pawlowski CS, Andersen HB, Ersbøll AK, Troelsen J. Schoolyard upgrade in a randomized controlled study design-how are school interventions associated with adolescents' perception of opportunities and recess physical activity. Health Educ Res. 2017 Jan 23. pii: cyw058. doi: 10.​1093/​her/​cyw058. [Epub ahead of print].
32.
go back to reference Janssen M, Twisk JW, Toussaint HM, et al. Effectiveness of the PLAYgrounds programme on PA levels during recess in 6-year-old to 12-year-old children. Br J Sports Med. 2015;49(4):259–64.CrossRefPubMed Janssen M, Twisk JW, Toussaint HM, et al. Effectiveness of the PLAYgrounds programme on PA levels during recess in 6-year-old to 12-year-old children. Br J Sports Med. 2015;49(4):259–64.CrossRefPubMed
33.
go back to reference Engelen L, Bundy AC, Naughton G, et al. Increasing physical activity in young primary school children—it’s child’s play: a cluster randomised controlled trial. Prev Med. 2013;56:319–25.CrossRefPubMed Engelen L, Bundy AC, Naughton G, et al. Increasing physical activity in young primary school children—it’s child’s play: a cluster randomised controlled trial. Prev Med. 2013;56:319–25.CrossRefPubMed
34.
go back to reference Van Kann DH, Kremers SP, de Vries NK, de Vries SI, Jansen MW. The effect of a school-centered multicomponent intervention on daily physical activity and sedentary behavior in primary school children: the active living study. Prev Med. 2016;89:64–9.CrossRefPubMed Van Kann DH, Kremers SP, de Vries NK, de Vries SI, Jansen MW. The effect of a school-centered multicomponent intervention on daily physical activity and sedentary behavior in primary school children: the active living study. Prev Med. 2016;89:64–9.CrossRefPubMed
35.
go back to reference Cliff DP, Hesketh KD, Vella SA, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):330–44.CrossRefPubMed Cliff DP, Hesketh KD, Vella SA, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):330–44.CrossRefPubMed
36.
go back to reference Suchert V, Hanewinkel R, Isensee B. Sedentary behavior and indicators of mental health in school-aged children and adolescents: a systematic review. Prev Med. 2015;76:48–57.CrossRefPubMed Suchert V, Hanewinkel R, Isensee B. Sedentary behavior and indicators of mental health in school-aged children and adolescents: a systematic review. Prev Med. 2015;76:48–57.CrossRefPubMed
37.
go back to reference van Ekris E, Altenburg TM, Singh AS, Proper KI, Heymans MW, Chinapaw MJ. An evidence-update on the prospective relationship between childhood sedentary behaviour and biomedical health indicators: a systematic review and meta-analysis. Obes Rev. 2016;17(9):833–49.CrossRefPubMed van Ekris E, Altenburg TM, Singh AS, Proper KI, Heymans MW, Chinapaw MJ. An evidence-update on the prospective relationship between childhood sedentary behaviour and biomedical health indicators: a systematic review and meta-analysis. Obes Rev. 2016;17(9):833–49.CrossRefPubMed
38.
go back to reference Chastin SF, Egerton T, Leask C, et al. Meta-analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity (Silver Spring). 2015;23(9):1800–10.CrossRef Chastin SF, Egerton T, Leask C, et al. Meta-analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity (Silver Spring). 2015;23(9):1800–10.CrossRef
39.
go back to reference Proper KI, Singh AS, van Mechelen W, Chinapaw MJ. Sedentary behaviors and health outcomes among adults: a systematic review of prospective studies. Am J Prev Med. 2011;40(2):174–82.CrossRefPubMed Proper KI, Singh AS, van Mechelen W, Chinapaw MJ. Sedentary behaviors and health outcomes among adults: a systematic review of prospective studies. Am J Prev Med. 2011;40(2):174–82.CrossRefPubMed
40.
go back to reference Arundell L, Fletcher E, Salmon J, et al. The correlates of after-school sedentary behavior among children aged 5-18 years: a systematic review. BMC Public Health. 2016;16(1):58.CrossRefPubMedPubMedCentral Arundell L, Fletcher E, Salmon J, et al. The correlates of after-school sedentary behavior among children aged 5-18 years: a systematic review. BMC Public Health. 2016;16(1):58.CrossRefPubMedPubMedCentral
42.
go back to reference Kaewthummanukul T, Brown KC. Determinants of employee participation in physical activity: critical review of the literature. AAOHN J. 2006;54(6):249–61.CrossRefPubMed Kaewthummanukul T, Brown KC. Determinants of employee participation in physical activity: critical review of the literature. AAOHN J. 2006;54(6):249–61.CrossRefPubMed
Metadata
Title
Effect of major school playground reconstruction on physical activity and sedentary behaviour: Camden active spaces
Authors
Mark Hamer
Daniel Aggio
Georgina Knock
Courtney Kipps
Aparna Shankar
Lee Smith
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2017
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-017-4483-5

Other articles of this Issue 1/2017

BMC Public Health 1/2017 Go to the issue