Skip to main content
Top
Published in: BMC Public Health 1/2016

Open Access 01-12-2015 | Research article

Screen-based sedentary behavior and associations with functional strength in 6–15 year-old children in the United States

Authors: Lisa R. Edelson, Kevin C. Mathias, Victor L. Fulgoni III, Leonidas G. Karagounis

Published in: BMC Public Health | Issue 1/2016

Login to get access

Abstract

Background

Physical strength is associated with improved health outcomes in children. Heavier children tend to have lower functional strength and mobility. Physical activity can increase children’s strength, but it is unknown how different types of electronic media use impact physical strength.

Methods

Data from the NHANES National Youth Fitness Survey (NNYFS) from children ages 6–15 were analyzed in this study. Regression models were conducted to determine if screen-based sedentary behaviors (television viewing time, computer/video game time) were associated with strength measures (grip, leg extensions, modified pull-ups, plank) while controlling for potential confounders including child age, sex, BMI z-score, and days per week with 60+ minutes of physical activity. Grip strength and leg extensions divided by body weight were analyzed to provide measures of relative strength together with pull-ups and plank, which require lifting the body.

Results

The results from the regression models showed the hypothesized inverse association between TV time and all strength measures. Computer time was only significantly inversely associated with the ability to do one or more pull-ups.

Conclusions

This study shows that television viewing, but not computer/videogames, is inversely associated with measures of child strength while controlling for child characteristics and physical activity. These findings suggest that “screen time” may not be a unified construct with respect to strength outcomes and that further exploration of the potential benefits of reducing television time on children’s strength and related mobility is needed.
Literature
1.
go back to reference González-Gross M, Meléndez A. Sedentarism, active lifestyle and sport: impact on health and obesity prevention. Nutr Hosp. 2013;28 Suppl 5:89–98.PubMed González-Gross M, Meléndez A. Sedentarism, active lifestyle and sport: impact on health and obesity prevention. Nutr Hosp. 2013;28 Suppl 5:89–98.PubMed
3.
go back to reference Smith J, Eather N, Morgan P, Plotnikoff R, Faigenbaum A, Lubans D. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. 2014;44(9):1209–23. doi:10.1007/s40279-014-0196-4.CrossRefPubMed Smith J, Eather N, Morgan P, Plotnikoff R, Faigenbaum A, Lubans D. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. 2014;44(9):1209–23. doi:10.​1007/​s40279-014-0196-4.CrossRefPubMed
4.
go back to reference Anderssen SA, Cooper AR, Riddoch C, Sardinha LB, Harro M, Brage S, et al. Low cardiorespiratory fitness is a strong predictor for clustering of cardiovascular disease risk factors in children independent of country, age and sex. Eur J Cardiovasc Prev Rehabil. 2007;14(4):526–31. doi:10.1097/HJR.0b013e328011efc1.CrossRefPubMed Anderssen SA, Cooper AR, Riddoch C, Sardinha LB, Harro M, Brage S, et al. Low cardiorespiratory fitness is a strong predictor for clustering of cardiovascular disease risk factors in children independent of country, age and sex. Eur J Cardiovasc Prev Rehabil. 2007;14(4):526–31. doi:10.​1097/​HJR.​0b013e328011efc1​.CrossRefPubMed
6.
go back to reference World Health Organization (WHO). Global recommendations on physical activity for health. 2010. World Health Organization (WHO). Global recommendations on physical activity for health. 2010.
7.
go back to reference Dowda M, Ainsworth BE, Addy CL, Saunders R, Riner W. Environmental influences, physical activity, and weight status in 8-to 16-year-olds. Arch Pediatr Adolesc Med. 2001;155(6):711–7.CrossRefPubMed Dowda M, Ainsworth BE, Addy CL, Saunders R, Riner W. Environmental influences, physical activity, and weight status in 8-to 16-year-olds. Arch Pediatr Adolesc Med. 2001;155(6):711–7.CrossRefPubMed
8.
go back to reference Peart T, Velasco Mondragon HE, Rohm-Young D, Bronner Y, Hossain MB. Weight status in US youth: the role of activity, diet, and sedentary behaviors. Am J Health Behav. 2011;35(6):756–64.CrossRefPubMed Peart T, Velasco Mondragon HE, Rohm-Young D, Bronner Y, Hossain MB. Weight status in US youth: the role of activity, diet, and sedentary behaviors. Am J Health Behav. 2011;35(6):756–64.CrossRefPubMed
9.
go back to reference Ervin RB, Fryar CD, Wang C-Y, Miller IM, Ogden CL. Strength and body weight in US children and adolescents. Pediatr. 2014;134(3):e782–e9.CrossRef Ervin RB, Fryar CD, Wang C-Y, Miller IM, Ogden CL. Strength and body weight in US children and adolescents. Pediatr. 2014;134(3):e782–e9.CrossRef
11.
go back to reference Scholtes VA, Becher JG, Comuth A, Dekkers H, van Dijk L, Dallmeijer AJ. Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurology. 2010;52(6):e107–13.CrossRef Scholtes VA, Becher JG, Comuth A, Dekkers H, van Dijk L, Dallmeijer AJ. Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurology. 2010;52(6):e107–13.CrossRef
12.
go back to reference Taveras EM, Field AE, Berkey CS, Rifas-Shiman SL, Frazier AL, Colditz GA, et al. Longitudinal relationship between television viewing and leisure-time physical activity during adolescence. Pediatr. 2007;119(2):e314–e9.CrossRef Taveras EM, Field AE, Berkey CS, Rifas-Shiman SL, Frazier AL, Colditz GA, et al. Longitudinal relationship between television viewing and leisure-time physical activity during adolescence. Pediatr. 2007;119(2):e314–e9.CrossRef
14.
go back to reference Sisson SB, Shay CM, Broyles ST, Leyva M. Television-viewing time and dietary quality among US children and adults. Am J Prev Med. 2012;43(2):196–200.CrossRefPubMed Sisson SB, Shay CM, Broyles ST, Leyva M. Television-viewing time and dietary quality among US children and adults. Am J Prev Med. 2012;43(2):196–200.CrossRefPubMed
15.
go back to reference Lissner L, Lanfer A, Gwozdz W, Olafsdottir S, Eiben G, Moreno LA, et al. Television habits in relation to overweight, diet and taste preferences in European children: the IDEFICS study. Eur J Epidemiol. 2012;27(9):705–15.PubMedCentralCrossRefPubMed Lissner L, Lanfer A, Gwozdz W, Olafsdottir S, Eiben G, Moreno LA, et al. Television habits in relation to overweight, diet and taste preferences in European children: the IDEFICS study. Eur J Epidemiol. 2012;27(9):705–15.PubMedCentralCrossRefPubMed
16.
go back to reference Johnson CL, Dohrmann SM, Kerckove V, Diallo MS, Clark J, Mohadjer LK, et al. National health and nutrition examination survey: national youth fitness survey estimation procedures, 2012. Data evaluation and methods research. 2014;2014(168):1–25. Johnson CL, Dohrmann SM, Kerckove V, Diallo MS, Clark J, Mohadjer LK, et al. National health and nutrition examination survey: national youth fitness survey estimation procedures, 2012. Data evaluation and methods research. 2014;2014(168):1–25.
28.
go back to reference Nelson MC, Neumark-Stzainer D, Hannan PJ, Sirard JR, Story M. Longitudinal and secular trends in physical activity and sedentary behavior during adolescence. Pediatr. 2006;118(6):e1627–e34. doi:10.1542/peds.2006-0926.CrossRef Nelson MC, Neumark-Stzainer D, Hannan PJ, Sirard JR, Story M. Longitudinal and secular trends in physical activity and sedentary behavior during adolescence. Pediatr. 2006;118(6):e1627–e34. doi:10.​1542/​peds.​2006-0926.CrossRef
30.
go back to reference DeMattia L, Lemont L, Meurer L. Do interventions to limit sedentary behaviours change behaviour and reduce childhood obesity? A critical review of the literature. Obes Rev. 2007;8(1):69–81.CrossRefPubMed DeMattia L, Lemont L, Meurer L. Do interventions to limit sedentary behaviours change behaviour and reduce childhood obesity? A critical review of the literature. Obes Rev. 2007;8(1):69–81.CrossRefPubMed
31.
32.
go back to reference de Jong E, Visscher TLS, HiraSing RA, Heymans MW, Seidell JC, Renders CM. Association between TV viewing, computer use and overweight, determinants and competing activities of screen time in 4- to 13-year-old children. Int J Obes. 2013;37(1):47–53.CrossRef de Jong E, Visscher TLS, HiraSing RA, Heymans MW, Seidell JC, Renders CM. Association between TV viewing, computer use and overweight, determinants and competing activities of screen time in 4- to 13-year-old children. Int J Obes. 2013;37(1):47–53.CrossRef
33.
go back to reference Sisson SB, Broyles ST, Baker BL, Katzmarzyk PT. Television, reading, and computer time: correlates of school-day leisure-time sedentary behavior and relationship with overweight in children in the US. J Phys Act Health. 2011;8(2):S188.PubMed Sisson SB, Broyles ST, Baker BL, Katzmarzyk PT. Television, reading, and computer time: correlates of school-day leisure-time sedentary behavior and relationship with overweight in children in the US. J Phys Act Health. 2011;8(2):S188.PubMed
35.
go back to reference Marsh S, Ni Mhurchu C, Jiang Y, Maddison R. Comparative effects of TV watching, recreational computer use, and sedentary video game play on spontaneous energy intake in male children. A randomised crossover trial. Appetite. 2014;77(0):13–8. doi:http://dx.doi.org/10.1016/j.appet.2014.02.008. Marsh S, Ni Mhurchu C, Jiang Y, Maddison R. Comparative effects of TV watching, recreational computer use, and sedentary video game play on spontaneous energy intake in male children. A randomised crossover trial. Appetite. 2014;77(0):13–8. doi:http://​dx.​doi.​org/​10.​1016/​j.​appet.​2014.​02.​008.
36.
go back to reference Marsh S, Ni Mhurchu C, Maddison R. The non-advertising effects of screen-based sedentary activities on acute eating behaviours in children, adolescents, and young adults. A systematic review. Appetite. 2013;71:259–73.CrossRefPubMed Marsh S, Ni Mhurchu C, Maddison R. The non-advertising effects of screen-based sedentary activities on acute eating behaviours in children, adolescents, and young adults. A systematic review. Appetite. 2013;71:259–73.CrossRefPubMed
37.
go back to reference Pearson N, Biddle SJ. Sedentary behavior and dietary intake in children, adolescents, and adults: a systematic review. Am J Prev Med. 2011;41(2):178–88.CrossRefPubMed Pearson N, Biddle SJ. Sedentary behavior and dietary intake in children, adolescents, and adults: a systematic review. Am J Prev Med. 2011;41(2):178–88.CrossRefPubMed
38.
go back to reference Segal KR, Dietz WH. Physiologic responses to playing a video game. Am J Dis Child. 1991;145(9):1034–6.PubMed Segal KR, Dietz WH. Physiologic responses to playing a video game. Am J Dis Child. 1991;145(9):1034–6.PubMed
39.
go back to reference Wang X, Perry AC. Metabolic and physiologic responses to video game play in 7-to 10-year-old boys. Arch Pediatr Adolesc Med. 2006;160(4):411–5.CrossRefPubMed Wang X, Perry AC. Metabolic and physiologic responses to video game play in 7-to 10-year-old boys. Arch Pediatr Adolesc Med. 2006;160(4):411–5.CrossRefPubMed
40.
go back to reference Klesges RC, Shelton ML, Klesges LM. Effects of television on metabolic rate: potential implications for childhood obesity. Pediatr. 1993;91(2):281–6. Klesges RC, Shelton ML, Klesges LM. Effects of television on metabolic rate: potential implications for childhood obesity. Pediatr. 1993;91(2):281–6.
41.
go back to reference Cain N, Gradisar M. Electronic media use and sleep in school-aged children and adolescents: A review. Sleep Med. 2010;11(8):735–42.CrossRefPubMed Cain N, Gradisar M. Electronic media use and sleep in school-aged children and adolescents: A review. Sleep Med. 2010;11(8):735–42.CrossRefPubMed
42.
go back to reference Grøntved A, Hu FB. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A meta-analysis. JAMA. 2011;305(23):2448–55.PubMedCentralCrossRefPubMed Grøntved A, Hu FB. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A meta-analysis. JAMA. 2011;305(23):2448–55.PubMedCentralCrossRefPubMed
43.
44.
go back to reference Verloigne M, Berntsen S, Ridgers ND, Cardon G, Chinapaw M, Altenburg T, et al. The UP4FUN intervention effect on breaking up sedentary time in 10–12 year-old Belgian children: the ENERGY-Project. Pediatric Exercise Science. 2015;27:234–42.CrossRefPubMed Verloigne M, Berntsen S, Ridgers ND, Cardon G, Chinapaw M, Altenburg T, et al. The UP4FUN intervention effect on breaking up sedentary time in 10–12 year-old Belgian children: the ENERGY-Project. Pediatric Exercise Science. 2015;27:234–42.CrossRefPubMed
45.
go back to reference Wethington H, Pan L, Sherry B. The Association of Screen Time, Television in the Bedroom, and Obesity Among School‐Aged Youth: 2007 National Survey of Children's Health. J Sch Health. 2013;83(8):573–81.PubMedCentralCrossRefPubMed Wethington H, Pan L, Sherry B. The Association of Screen Time, Television in the Bedroom, and Obesity Among School‐Aged Youth: 2007 National Survey of Children's Health. J Sch Health. 2013;83(8):573–81.PubMedCentralCrossRefPubMed
46.
go back to reference Gentile DA, Reimer RA, Nathanson AI, Walsh DA, Eisenmann JC. Protective effects of parental monitoring of children’s media use: a prospective study. JAMA Pediatrics. 2014;168:479–84.CrossRefPubMed Gentile DA, Reimer RA, Nathanson AI, Walsh DA, Eisenmann JC. Protective effects of parental monitoring of children’s media use: a prospective study. JAMA Pediatrics. 2014;168:479–84.CrossRefPubMed
Metadata
Title
Screen-based sedentary behavior and associations with functional strength in 6–15 year-old children in the United States
Authors
Lisa R. Edelson
Kevin C. Mathias
Victor L. Fulgoni III
Leonidas G. Karagounis
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2016
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-016-2791-9

Other articles of this Issue 1/2016

BMC Public Health 1/2016 Go to the issue