Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

Longitudinal changes in objectively measured physical activity differ for weekdays and weekends among Chinese children in Hong Kong

Authors: Stephen Heung-Sang Wong, Wendy Yajun Huang, Gang He

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

Cross-sectional investigation showed that Chinese children in Hong Kong were more physically active on weekends than weekdays, which is contrary to previous findings. However, little is known as to whether these time-segment-specific differences persist with age. This study aimed to compare the 2-year changes in accelerometer-assessed physical activity (PA) and sedentary time (ST) between weekdays and weekends among Chinese children in Hong Kong.

Methods

Children aged 6–8 years were recruited from primary schools in Hong Kong. Time spent in ST (<100 counts per minute [cpm]), moderate-to-vigorous PA (MVPA), and light-intensity PA (LPA) were measured by accelerometer at baseline and then at 1-year and 2-year follow-ups. Mean annual changes were determined using mixed-effects linear models for children who provided 3-day valid data (including 1 weekend day) for at least two time points (n = 412). Magnitude of changes between weekdays and weekends was compared using age × time-segment interactions.

Results

At each assessment wave, the percentage of time spent in MVPA (% MVPA) and LPA (% LPA) was consistently high, whereas the percentage of time spent in ST (% ST) was lower on weekends than weekdays. A decrease in % MVPA was found for both weekdays (mean annual change: boys, −0.7, 95 % CI = −0.9 to −0.1; girls, −0.8, 95 % CI = −1.0 to −0.6) and weekends (boys, −1.2, 95 % CI = −1.5 to −0.9; girls, −1.4, 95 % CI = −1.6 to −1.1). An increase was found in % ST for both weekdays (boys, 1.3, 95 % CI = 0.7 to 1.9; girls, 2.4, 95 % CI = 1.9 to 3.3) and weekends (boys, 1.8, 95 % CI = 1.1 to 2.5; girls, 2.6, 95 % CI = 1.9 to 3.3). Mean annual change in MVPA time (min) was greater on weekends than weekdays (difference: boys, 3.0, 95 % CI = 0.3 to 5.7; girls, 3.5, 95 % CI = 1.1 to 5.8).

Conclusions

Age-related decline in MVPA was more marked on weekends than weekdays. Interventions to hinder age-related changes in PA and ST should target both time segments, but weekends warrant particular attention for interventions targeting PA maintenance due to the greater declines.
Literature
1.
go back to reference Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.PubMedPubMedCentralCrossRef Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.PubMedPubMedCentralCrossRef
2.
go back to reference Saunders TJ, Chaput JP, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):53–61.PubMedCrossRef Saunders TJ, Chaput JP, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):53–61.PubMedCrossRef
3.
go back to reference Coombs NA, Stamatakis E. Associations between objectively assessed and questionnaire-based sedentary behaviour with BMI-defined obesity among general population children and adolescents living in England. BMJ Open. 2015;5(6):e007172.PubMedPubMedCentralCrossRef Coombs NA, Stamatakis E. Associations between objectively assessed and questionnaire-based sedentary behaviour with BMI-defined obesity among general population children and adolescents living in England. BMJ Open. 2015;5(6):e007172.PubMedPubMedCentralCrossRef
4.
go back to reference Tremblay MS, Leblanc AG, Janssen I, Kho ME, Hicks A, Murumets K, et al. Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab. 2011;36(1):59–64. 5–71.PubMedCrossRef Tremblay MS, Leblanc AG, Janssen I, Kho ME, Hicks A, Murumets K, et al. Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab. 2011;36(1):59–64. 5–71.PubMedCrossRef
5.
go back to reference Dumith SC, Gigante DP, Domingues MR, Kohl 3rd HW. Physical activity change during adolescence: a systematic review and a pooled analysis. Int J Epidemiol. 2011;40(3):685–98.PubMedCrossRef Dumith SC, Gigante DP, Domingues MR, Kohl 3rd HW. Physical activity change during adolescence: a systematic review and a pooled analysis. Int J Epidemiol. 2011;40(3):685–98.PubMedCrossRef
6.
go back to reference Tanaka C, Reilly JJ, Huang WY. Longitudinal changes in objectively measured sedentary behaviour and their relationship with adiposity in children and adolescents: systematic review and evidence appraisal. Obes Rev. 2014;15(10):791–803.PubMedCrossRef Tanaka C, Reilly JJ, Huang WY. Longitudinal changes in objectively measured sedentary behaviour and their relationship with adiposity in children and adolescents: systematic review and evidence appraisal. Obes Rev. 2014;15(10):791–803.PubMedCrossRef
7.
go back to reference Brooke HL, Corder K, Atkin AJ, van Sluijs EM. A systematic literature review with meta-analyses of within- and between-day differences in objectively measured physical activity in school-aged children. Sports Med. 2014;44(10):1427–38.PubMedPubMedCentralCrossRef Brooke HL, Corder K, Atkin AJ, van Sluijs EM. A systematic literature review with meta-analyses of within- and between-day differences in objectively measured physical activity in school-aged children. Sports Med. 2014;44(10):1427–38.PubMedPubMedCentralCrossRef
8.
go back to reference Atkin AJ, Corder K, Ekelund U, van Sluijs EM. Changes in time-segment specific physical activity between ages 10 and 14 years: A longitudinal observational study. J Sci Med Sport. 2014; doi:10.1016/j.jsams.2014.10.003 Atkin AJ, Corder K, Ekelund U, van Sluijs EM. Changes in time-segment specific physical activity between ages 10 and 14 years: A longitudinal observational study. J Sci Med Sport. 2014; doi:10.​1016/​j.​jsams.​2014.​10.​003
9.
go back to reference Harding SK, Page AS, Falconer C, Cooper AR. Longitudinal changes in sedentary time and physical activity during adolescence. Int J Behav Nutr Phys Act. 2015;12(1):44.PubMedPubMedCentralCrossRef Harding SK, Page AS, Falconer C, Cooper AR. Longitudinal changes in sedentary time and physical activity during adolescence. Int J Behav Nutr Phys Act. 2015;12(1):44.PubMedPubMedCentralCrossRef
10.
go back to reference Mak KK, Ho SY, Lo WS, McManus AM, Lam TH. Prevalence of exercise and non-exercise physical activity in Chinese adolescents. Int J Behav Nutr Phys Act. 2011;8:3.PubMedPubMedCentralCrossRef Mak KK, Ho SY, Lo WS, McManus AM, Lam TH. Prevalence of exercise and non-exercise physical activity in Chinese adolescents. Int J Behav Nutr Phys Act. 2011;8:3.PubMedPubMedCentralCrossRef
11.
go back to reference Lam JW, Sit CH, Cerin E. Physical activity and sedentary behaviours in Hong Kong primary school children: Prevalence and gender differences. Prev Med. 2010;51(1):96–7.PubMedCrossRef Lam JW, Sit CH, Cerin E. Physical activity and sedentary behaviours in Hong Kong primary school children: Prevalence and gender differences. Prev Med. 2010;51(1):96–7.PubMedCrossRef
12.
go back to reference Reilly JJ, Penpraze V, Hislop J, Davies G, Grant S, Paton JY. Objective measurement of physical activity and sedentary behaviour: review with new data. Arch Dis Child. 2008;93(7):614–9.PubMedCrossRef Reilly JJ, Penpraze V, Hislop J, Davies G, Grant S, Paton JY. Objective measurement of physical activity and sedentary behaviour: review with new data. Arch Dis Child. 2008;93(7):614–9.PubMedCrossRef
13.
go back to reference Huang YJ, Wong SH, Salmon J. Reliability and validity of the modified Chinese version of the Children’s Leisure Activities Study Survey (CLASS) questionnaire in assessing physical activity among Hong Kong children. Pedia Exerc Sci. 2009;21(3):339–53. Huang YJ, Wong SH, Salmon J. Reliability and validity of the modified Chinese version of the Children’s Leisure Activities Study Survey (CLASS) questionnaire in assessing physical activity among Hong Kong children. Pedia Exerc Sci. 2009;21(3):339–53.
14.
go back to reference Huang YJ, Wong SH, Salmon J, Hui SS. Reliability and validity of psychosocial and environmental correlates measures of physical activity and screen-based behaviors among Chinese children in Hong Kong. Int J Behav Nutr Phys Act. 2011;8:16.PubMedPubMedCentralCrossRef Huang YJ, Wong SH, Salmon J, Hui SS. Reliability and validity of psychosocial and environmental correlates measures of physical activity and screen-based behaviors among Chinese children in Hong Kong. Int J Behav Nutr Phys Act. 2011;8:16.PubMedPubMedCentralCrossRef
15.
go back to reference Ruiz JR, Ortega FB, Martinez-Gomez D, Labayen I, Moreno LA, De Bourdeaudhuij I, et al. Objectively measured physical activity and sedentary time in European adolescents: the HELENA study. Am J Epidemiol. 2011;174(2):173–84.PubMedCrossRef Ruiz JR, Ortega FB, Martinez-Gomez D, Labayen I, Moreno LA, De Bourdeaudhuij I, et al. Objectively measured physical activity and sedentary time in European adolescents: the HELENA study. Am J Epidemiol. 2011;174(2):173–84.PubMedCrossRef
16.
go back to reference Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350–5.PubMedCrossRef Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350–5.PubMedCrossRef
17.
go back to reference Arundell L, Ridgers ND, Veitch J, Salmon J, Hinkley T, Timperio A. 5-year changes in afterschool physical activity and sedentary behavior. Am J Prev Med. 2013;44(6):605–11.PubMedCrossRef Arundell L, Ridgers ND, Veitch J, Salmon J, Hinkley T, Timperio A. 5-year changes in afterschool physical activity and sedentary behavior. Am J Prev Med. 2013;44(6):605–11.PubMedCrossRef
18.
go back to reference Kim Y, Lee JM, Peters BP, Gaesser GA, Welk GJ. Examination of different accelerometer cut-points for assessing sedentary behaviors in children. PLoS One. 2014;9(4):e90630.PubMedPubMedCentralCrossRef Kim Y, Lee JM, Peters BP, Gaesser GA, Welk GJ. Examination of different accelerometer cut-points for assessing sedentary behaviors in children. PLoS One. 2014;9(4):e90630.PubMedPubMedCentralCrossRef
19.
go back to reference Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240–3.PubMedPubMedCentralCrossRef Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240–3.PubMedPubMedCentralCrossRef
20.
go back to reference Rowlands AV, Pilgrim EL, Eston RG. Patterns of habitual activity across weekdays and weekend days in 9-11-year-old children. Prev Med. 2008;46(4):317–24.PubMedCrossRef Rowlands AV, Pilgrim EL, Eston RG. Patterns of habitual activity across weekdays and weekend days in 9-11-year-old children. Prev Med. 2008;46(4):317–24.PubMedCrossRef
21.
go back to reference Fairclough SJ, Boddy LM, Mackintosh KA, Valencia-Peris A, Ramirez-Rico E. Weekday and weekend sedentary time and physical activity in differentially active children. J Sci Med Sport. 2015;18(4):444–9.PubMedCrossRef Fairclough SJ, Boddy LM, Mackintosh KA, Valencia-Peris A, Ramirez-Rico E. Weekday and weekend sedentary time and physical activity in differentially active children. J Sci Med Sport. 2015;18(4):444–9.PubMedCrossRef
22.
go back to reference Wing YK, Li SX, Li AM, Zhang J, Kong AP. The effect of weekend and holiday sleep compensation on childhood overweight and obesity. Pediatrics. 2009;124(5):e994–e1000.PubMedCrossRef Wing YK, Li SX, Li AM, Zhang J, Kong AP. The effect of weekend and holiday sleep compensation on childhood overweight and obesity. Pediatrics. 2009;124(5):e994–e1000.PubMedCrossRef
23.
go back to reference Chow BC, McKenzie TL, Louie L. Children’s physical activity and environmental influences during elementary school physical education. J Teach Phys Educ. 2008;27(1):38–50. Chow BC, McKenzie TL, Louie L. Children’s physical activity and environmental influences during elementary school physical education. J Teach Phys Educ. 2008;27(1):38–50.
24.
25.
go back to reference Belanger M, Gray-Donald K, O’Loughlin J, Paradis G, Hanley J. When adolescents drop the ball: sustainability of physical activity in youth. Am J Prev Med. 2009;37(1):41–9.PubMedCrossRef Belanger M, Gray-Donald K, O’Loughlin J, Paradis G, Hanley J. When adolescents drop the ball: sustainability of physical activity in youth. Am J Prev Med. 2009;37(1):41–9.PubMedCrossRef
26.
go back to reference Kjonniksen L, Torsheim T, Wold B. Tracking of leisure-time physical activity during adolescence and young adulthood: a 10-year longitudinal study. Int J Behav Nutr Phys Act. 2008;5:69.PubMedPubMedCentralCrossRef Kjonniksen L, Torsheim T, Wold B. Tracking of leisure-time physical activity during adolescence and young adulthood: a 10-year longitudinal study. Int J Behav Nutr Phys Act. 2008;5:69.PubMedPubMedCentralCrossRef
27.
go back to reference Basterfield L, Adamson AJ, Frary JK, Parkinson KN, Pearce MS, Reilly JJ. Longitudinal study of physical activity and sedentary behavior in children. Pediatrics. 2011;127(1):e24–30.PubMedCrossRef Basterfield L, Adamson AJ, Frary JK, Parkinson KN, Pearce MS, Reilly JJ. Longitudinal study of physical activity and sedentary behavior in children. Pediatrics. 2011;127(1):e24–30.PubMedCrossRef
28.
go back to reference Corder K, Sharp SJ, Atkin AJ, Griffin SJ, Jones AP, Ekelund U et al. Change in objectively measured physical activity during the transition to adolescence. Br J Sports Med. 2014:doi:10.1136/bjsports-2013-093190. Corder K, Sharp SJ, Atkin AJ, Griffin SJ, Jones AP, Ekelund U et al. Change in objectively measured physical activity during the transition to adolescence. Br J Sports Med. 2014:doi:10.​1136/​bjsports-2013-093190.
29.
go back to reference Huang WY, Wong SH, Salmon J. Correlates of physical activity and screen-based behaviors in Chinese children. J Sci Med Sport. 2013;16(6):509–14.PubMedCrossRef Huang WY, Wong SH, Salmon J. Correlates of physical activity and screen-based behaviors in Chinese children. J Sci Med Sport. 2013;16(6):509–14.PubMedCrossRef
30.
go back to reference Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307(7):704–12.PubMedPubMedCentralCrossRef Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307(7):704–12.PubMedPubMedCentralCrossRef
31.
go back to reference Kwon S, Janz KF, Burns TL, Levy SM. Association between light-intensity physical activity and adiposity in childhood. Pediatr Exerc Sci. 2011;23(2):218–29.PubMedPubMedCentral Kwon S, Janz KF, Burns TL, Levy SM. Association between light-intensity physical activity and adiposity in childhood. Pediatr Exerc Sci. 2011;23(2):218–29.PubMedPubMedCentral
32.
go back to reference Corder K, Craggs C, Jones AP, Ekelund U, Griffin SJ, van Sluijs EM. Predictors of change differ for moderate and vigorous intensity physical activity and for weekdays and weekends: a longitudinal analysis. Int J Behav Nutr Phys Act. 2013;10:69.PubMedPubMedCentralCrossRef Corder K, Craggs C, Jones AP, Ekelund U, Griffin SJ, van Sluijs EM. Predictors of change differ for moderate and vigorous intensity physical activity and for weekdays and weekends: a longitudinal analysis. Int J Behav Nutr Phys Act. 2013;10:69.PubMedPubMedCentralCrossRef
33.
go back to reference He G, Cerin E, Huang WY, Wong SH. Understanding neighborhood environment related to Hong Kong children’s physical activity: a qualitative study using nominal group technique. PLoS One. 2014;9(9):e106578.PubMedPubMedCentralCrossRef He G, Cerin E, Huang WY, Wong SH. Understanding neighborhood environment related to Hong Kong children’s physical activity: a qualitative study using nominal group technique. PLoS One. 2014;9(9):e106578.PubMedPubMedCentralCrossRef
34.
go back to reference Edwardson CL, Gorely T. Epoch length and its effect on physical activity intensity. Med Sci Sports Exerc. 2010;42(5):928–34.PubMedCrossRef Edwardson CL, Gorely T. Epoch length and its effect on physical activity intensity. Med Sci Sports Exerc. 2010;42(5):928–34.PubMedCrossRef
Metadata
Title
Longitudinal changes in objectively measured physical activity differ for weekdays and weekends among Chinese children in Hong Kong
Authors
Stephen Heung-Sang Wong
Wendy Yajun Huang
Gang He
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-2618-0

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue