Skip to main content
Top
Published in: BMC Pediatrics 1/2023

Open Access 01-12-2023 | Gonadal Dysgenesis | Case Report

A novel c.64G > T (p.G22C) NR5A1 variant in a Chinese adolescent with 46,XY disorders of sex development: a case report

Authors: Dan Zhang, Dajia Wang, Yajie Tong, Mingyu Li, Lingzhe Meng, Qiutong Song, Ying Xin

Published in: BMC Pediatrics | Issue 1/2023

Login to get access

Abstract

Background

Adolescents with 46,XY disorders of sex development (DSD) face additional medical and psychological challenges. To optimize management and minimize hazards, correct and early clinical and molecular diagnosis is necessary.

Case presentation

We report a 13-year-old Chinese adolescent with absent Müllerian derivatives and suspected testis in the inguinal area. History, examinations, and assistant examinations were available for clinical diagnosis of 46,XY DSD. The subsequent targeting specific disease‐causing genes, comprising 360 endocrine disease-causing genes, was employed for molecular diagnosis. A novel variation in nuclear receptor subfamily 5 group A member 1 (NR5A1) [c.64G > T (p.G22C)] was identified in the patient. In vitro functional analyses of the novel variant suggested no impairment to NR5A1 mRNA or protein expression relative to wild-type, and immunofluorescence confirmed similar localization of NR5A1 mutant to the cell nucleus. However, we observed decreased DNA-binding affinity by the NR5A1 variant, while dual-luciferase reporter assays showed that the mutant effectively downregulated the transactivation capacity of anti-Müllerian hormone. We described a novel NR5A1 variant and demonstrated its adverse effects on the functional integrity of the NR5A1 protein resulting in serious impairment of its modulation of gonadal development.

Conclusions

This study adds one novel NR5A1 variant to the pool of pathogenic variants and enriches the adolescents of information available about the mutation spectrum of this gene in Chinese population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lee PA, Nordenström A, Houk CP, Ahmed SF, Auchus R, Baratz A, et al. Global Disorders of Sex Development Update since 2006: Perceptions Approach and Care. Horm Res Paediatr. 2016;85:158–80.CrossRefPubMed Lee PA, Nordenström A, Houk CP, Ahmed SF, Auchus R, Baratz A, et al. Global Disorders of Sex Development Update since 2006: Perceptions Approach and Care. Horm Res Paediatr. 2016;85:158–80.CrossRefPubMed
2.
go back to reference Elzaiat M, McElreavey K, Bashamboo A. Genetics of 46, XY gonadal dysgenesis. Best Pract Res Clin Endocrinol Metab. 2022;36:101633.CrossRefPubMed Elzaiat M, McElreavey K, Bashamboo A. Genetics of 46, XY gonadal dysgenesis. Best Pract Res Clin Endocrinol Metab. 2022;36:101633.CrossRefPubMed
3.
go back to reference Auchus RJ, Quint EH. Adolescents with Disorders of Sex Development (DSD)–Lost in Transition? Horm Metab Res. 2015;47(5):367–74.CrossRefPubMed Auchus RJ, Quint EH. Adolescents with Disorders of Sex Development (DSD)–Lost in Transition? Horm Metab Res. 2015;47(5):367–74.CrossRefPubMed
4.
go back to reference Délot EC, Vilain E. Towards improved genetic diagnosis of human differences of sex development. Nat Rev Genet. 2021;22:588–602.CrossRefPubMed Délot EC, Vilain E. Towards improved genetic diagnosis of human differences of sex development. Nat Rev Genet. 2021;22:588–602.CrossRefPubMed
5.
go back to reference Gomes NL, Batista RL, Nishi MY, Lerário AM, Silva TE, de Moraes NA, et al. Contribution of Clinical and Genetic Approaches for Diagnosing 209 Index Cases With 46, XY Differences of Sex Development. J Clin Endocrinol Metab. 2022;107:e1797–806.CrossRefPubMed Gomes NL, Batista RL, Nishi MY, Lerário AM, Silva TE, de Moraes NA, et al. Contribution of Clinical and Genetic Approaches for Diagnosing 209 Index Cases With 46, XY Differences of Sex Development. J Clin Endocrinol Metab. 2022;107:e1797–806.CrossRefPubMed
6.
go back to reference Fabbri-Scallet H, de Sousa LM, Maciel-Guerra AT, Guerra-Júnior G, de Mello MP. Mutation update for the NR5A1 gene involved in DSD and infertility. Hum Mutat. 2020;41:58–68.CrossRefPubMed Fabbri-Scallet H, de Sousa LM, Maciel-Guerra AT, Guerra-Júnior G, de Mello MP. Mutation update for the NR5A1 gene involved in DSD and infertility. Hum Mutat. 2020;41:58–68.CrossRefPubMed
7.
go back to reference Rey RA. Next-generation sequencing as first-line diagnostic test in patients with disorders of sex development? J Clin Endocrinol Metab. 2022;107:e2628–9.CrossRefPubMed Rey RA. Next-generation sequencing as first-line diagnostic test in patients with disorders of sex development? J Clin Endocrinol Metab. 2022;107:e2628–9.CrossRefPubMed
8.
go back to reference Baxter RM, Arboleda VA, Lee H, Barseghyan H, Adam MP, Fechner PY, et al. Exome sequencing for the diagnosis of 46, XY disorders of sex development. J Clin Endocrinol Metab. 2015;100:E333–44.CrossRefPubMed Baxter RM, Arboleda VA, Lee H, Barseghyan H, Adam MP, Fechner PY, et al. Exome sequencing for the diagnosis of 46, XY disorders of sex development. J Clin Endocrinol Metab. 2015;100:E333–44.CrossRefPubMed
9.
go back to reference Sepponen K, Lundin K, Yohannes DA, Vuoristo S, Balboa D, Poutanen M, et al. Steroidogenic factor 1 (NR5A1) induces multiple transcriptional changes during differentiation of human gonadal-like cells. Differentiation. 2022;S0301–4681:00062–7. Sepponen K, Lundin K, Yohannes DA, Vuoristo S, Balboa D, Poutanen M, et al. Steroidogenic factor 1 (NR5A1) induces multiple transcriptional changes during differentiation of human gonadal-like cells. Differentiation. 2022;S0301–4681:00062–7.
10.
go back to reference Globa E, Zelinska N, Shcherbak Y, Bignon-Topalovic J, Bashamboo A, McElreavey K. Disorders of sex development in a large Ukrainian cohort: clinical diversity and genetic findings. Front Endocrinol (Lausanne). 2022;13:810782.CrossRefPubMed Globa E, Zelinska N, Shcherbak Y, Bignon-Topalovic J, Bashamboo A, McElreavey K. Disorders of sex development in a large Ukrainian cohort: clinical diversity and genetic findings. Front Endocrinol (Lausanne). 2022;13:810782.CrossRefPubMed
11.
go back to reference McElreavey K, Achermann JC. Steroidogenic Factor-1 (SF-1, NR5A1) and 46, XX Ovotesticular Disorders of Sex Development: One Factor Many Phenotypes. Horm Res Paediatr. 2017;87:189–90.CrossRefPubMed McElreavey K, Achermann JC. Steroidogenic Factor-1 (SF-1, NR5A1) and 46, XX Ovotesticular Disorders of Sex Development: One Factor Many Phenotypes. Horm Res Paediatr. 2017;87:189–90.CrossRefPubMed
12.
go back to reference Ozisik G, Achermann JC, Jameson JL. The role of SF1 in adrenal and reproductive function: insight from naturally occurring mutations in humans. Mol Genet Metab. 2002;76:85–91.CrossRefPubMed Ozisik G, Achermann JC, Jameson JL. The role of SF1 in adrenal and reproductive function: insight from naturally occurring mutations in humans. Mol Genet Metab. 2002;76:85–91.CrossRefPubMed
13.
go back to reference Pedace L, Laino L, Preziosi N, Valentini MS, Scommegna S, Rapone AM, et al. Longitudinal hormonal evaluation in a patient with disorder of sexual development, 46, XY karyotype and one NR5A1 mutation. Am J Med Genet A. 2014;164A:2938–46.CrossRefPubMed Pedace L, Laino L, Preziosi N, Valentini MS, Scommegna S, Rapone AM, et al. Longitudinal hormonal evaluation in a patient with disorder of sexual development, 46, XY karyotype and one NR5A1 mutation. Am J Med Genet A. 2014;164A:2938–46.CrossRefPubMed
14.
go back to reference Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer [published correction appears in Nature. Nature. 2008;453:930–4.CrossRefPubMed Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer [published correction appears in Nature. Nature. 2008;453:930–4.CrossRefPubMed
15.
go back to reference Grinspon RP, Bedecarrás P, Ballerini MG, Iñiguez G, Rocha A, Mantovani Rodrigues Resende EA, et al. Early onset of primary hypogonadism revealed by serum anti-Müllerian hormone determination during infancy and childhood in trisomy 21. Int J Androl. 2011;34(415):e487-98.CrossRefPubMed Grinspon RP, Bedecarrás P, Ballerini MG, Iñiguez G, Rocha A, Mantovani Rodrigues Resende EA, et al. Early onset of primary hypogonadism revealed by serum anti-Müllerian hormone determination during infancy and childhood in trisomy 21. Int J Androl. 2011;34(415):e487-98.CrossRefPubMed
16.
go back to reference Xuefeng J, Mo W, Xiaodong Z, Xuemei T, Xiaogang W, Daoqi Wu, et al. Serum Inhibin B’s Reference Range of 9 to 15 Year·Old M ale Children in Chongqing. J Pediatr Pharm. 2013;19(3):1–3. Xuefeng J, Mo W, Xiaodong Z, Xuemei T, Xiaogang W, Daoqi Wu, et al. Serum Inhibin B’s Reference Range of 9 to 15 Year·Old M ale Children in Chongqing. J Pediatr Pharm. 2013;19(3):1–3.
17.
go back to reference Hong S, Wang L, Zhao D, Zhang Y, Chen Y, Tan J, et al. Clinical utility in infants with suspected monogenic conditions through next-generation sequencing. Mol Genet Genomic Med. 2019;7:e684.CrossRefPubMedPubMedCentral Hong S, Wang L, Zhao D, Zhang Y, Chen Y, Tan J, et al. Clinical utility in infants with suspected monogenic conditions through next-generation sequencing. Mol Genet Genomic Med. 2019;7:e684.CrossRefPubMedPubMedCentral
18.
go back to reference Zhang D, Xin Y, Li MY, Meng LZ, Tong YJ. A novel missense mutation of NR5A1 c.46T>C (p.C16R) in a Chinese infant with ambiguous genitalia. Asian J Androl. 2022;24(4):438–40.CrossRefPubMed Zhang D, Xin Y, Li MY, Meng LZ, Tong YJ. A novel missense mutation of NR5A1 c.46T>C (p.C16R) in a Chinese infant with ambiguous genitalia. Asian J Androl. 2022;24(4):438–40.CrossRefPubMed
19.
go back to reference Vora KA, Srinivasan S. A guide to differences/disorders of sex development/intersex in children and adolescents. Aust J Gen Pract. 2020;49:417–22.CrossRefPubMed Vora KA, Srinivasan S. A guide to differences/disorders of sex development/intersex in children and adolescents. Aust J Gen Pract. 2020;49:417–22.CrossRefPubMed
20.
go back to reference Costagliola G, Cosci O di Coscio M, Masini B, Baldinotti F, Caligo M, Tyutyusheva N, et al. Disorders of sexual development with XY karyotype and female phenotype: clinical findings and genetic background in a cohort from a single centre. J Endocrinol Invest. 2021;44:145–51.CrossRefPubMed Costagliola G, Cosci O di Coscio M, Masini B, Baldinotti F, Caligo M, Tyutyusheva N, et al. Disorders of sexual development with XY karyotype and female phenotype: clinical findings and genetic background in a cohort from a single centre. J Endocrinol Invest. 2021;44:145–51.CrossRefPubMed
21.
go back to reference Hughes LA, McKay-Bounford K, Webb EA, Dasani P, Clokie S, Chandran H, et al. Next generation sequencing (NGS) to improve the diagnosis and management of patients with disorders of sex development (DSD). Endocr Connect. 2019;8:100–10.CrossRefPubMedPubMedCentral Hughes LA, McKay-Bounford K, Webb EA, Dasani P, Clokie S, Chandran H, et al. Next generation sequencing (NGS) to improve the diagnosis and management of patients with disorders of sex development (DSD). Endocr Connect. 2019;8:100–10.CrossRefPubMedPubMedCentral
22.
go back to reference Achermann JC, Ozisik G, Ito M, Orun UA, Harmanci K, Gurakan B, et al. Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J Clin Endocrinol Metab. 2002;87:1829–33.CrossRefPubMed Achermann JC, Ozisik G, Ito M, Orun UA, Harmanci K, Gurakan B, et al. Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J Clin Endocrinol Metab. 2002;87:1829–33.CrossRefPubMed
23.
go back to reference Pan S, Guo S, Liu L, Yang X, Liang H. Functional study of a novel c.630delG (p.Y211Tfs*85) mutation in NR5A1 gene in a Chinese boy with 46,XY disorders of sex development. J Assist Reprod Genet. 2020;37:477–86.CrossRefPubMedPubMedCentral Pan S, Guo S, Liu L, Yang X, Liang H. Functional study of a novel c.630delG (p.Y211Tfs*85) mutation in NR5A1 gene in a Chinese boy with 46,XY disorders of sex development. J Assist Reprod Genet. 2020;37:477–86.CrossRefPubMedPubMedCentral
24.
go back to reference Yu BQ, Liu ZX, Gao YJ, Wang X, Mao JF, Nie M, et al. Prevalence of gene mutations in a Chinese 46, XY disorders of sex development cohort detected by targeted next-generation sequencing. Asian J Androl. 2021;23:69–73.CrossRefPubMed Yu BQ, Liu ZX, Gao YJ, Wang X, Mao JF, Nie M, et al. Prevalence of gene mutations in a Chinese 46, XY disorders of sex development cohort detected by targeted next-generation sequencing. Asian J Androl. 2021;23:69–73.CrossRefPubMed
25.
go back to reference Yu B, Liu Z, Gao Y, Mao J, Wang X, Hao M, et al. Novel NR5A1 mutations found in Chinese patients with 46, XY disorders of sex development. Clin Endocrinol (Oxf). 2018;89:613–20.CrossRefPubMed Yu B, Liu Z, Gao Y, Mao J, Wang X, Hao M, et al. Novel NR5A1 mutations found in Chinese patients with 46, XY disorders of sex development. Clin Endocrinol (Oxf). 2018;89:613–20.CrossRefPubMed
26.
go back to reference Alhamoudi KM, Alghamdi B, Aljomaiah A, Alswailem M, Al-Hindi H, Alzahrani AS. Case Report: Severe Gonadal Dysgenesis Causing 46, XY Disorder of Sex Development Due to a Novel NR5A1 Variant. Front Genet. 2022;13:885589.CrossRefPubMedPubMedCentral Alhamoudi KM, Alghamdi B, Aljomaiah A, Alswailem M, Al-Hindi H, Alzahrani AS. Case Report: Severe Gonadal Dysgenesis Causing 46, XY Disorder of Sex Development Due to a Novel NR5A1 Variant. Front Genet. 2022;13:885589.CrossRefPubMedPubMedCentral
27.
go back to reference Sudhakar DVS, Jaishankar S, Regur P, Kumar U, Singh R, Kabilan U, et al. Novel NR5A1 Pathogenic Variants Cause Phenotypic Heterogeneity in 46, XY Disorders of Sex Development. Sex Dev. 2019;13:178–86.CrossRefPubMed Sudhakar DVS, Jaishankar S, Regur P, Kumar U, Singh R, Kabilan U, et al. Novel NR5A1 Pathogenic Variants Cause Phenotypic Heterogeneity in 46, XY Disorders of Sex Development. Sex Dev. 2019;13:178–86.CrossRefPubMed
28.
go back to reference Berglund A, Johannsen TH, Stochholm K, Viuff MH, Fedder J, Main KM, et al. Incidence, prevalence, diagnostic delay, and clinical presentation of female 46, XY disorders of sex development. J Clin Endocrinol Metab. 2016;101:4532–40.CrossRefPubMed Berglund A, Johannsen TH, Stochholm K, Viuff MH, Fedder J, Main KM, et al. Incidence, prevalence, diagnostic delay, and clinical presentation of female 46, XY disorders of sex development. J Clin Endocrinol Metab. 2016;101:4532–40.CrossRefPubMed
29.
go back to reference Josso N, Rey RA. What Does AMH Tell Us in Pediatric Disorders of Sex Development? Front Endocrinol. 2020;11:619.CrossRef Josso N, Rey RA. What Does AMH Tell Us in Pediatric Disorders of Sex Development? Front Endocrinol. 2020;11:619.CrossRef
Metadata
Title
A novel c.64G > T (p.G22C) NR5A1 variant in a Chinese adolescent with 46,XY disorders of sex development: a case report
Authors
Dan Zhang
Dajia Wang
Yajie Tong
Mingyu Li
Lingzhe Meng
Qiutong Song
Ying Xin
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2023
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-023-03974-7

Other articles of this Issue 1/2023

BMC Pediatrics 1/2023 Go to the issue