Skip to main content
Top
Published in: BMC Pediatrics 1/2022

Open Access 01-12-2022 | Hyperkalemia | Case report

Delayed diagnosis of complex glycerol kinase deficiency in a Chinese male infant: a case report

Authors: Na Tao, Xiaomei Liu, Yueqi Chen, Meiyuan Sun, Fang Xu, Yanfang Su

Published in: BMC Pediatrics | Issue 1/2022

Login to get access

Abstract

Background

Xp21 contiguous gene deletion syndrome is a rare genetic metabolic disorder with poor prognosis in infants, involving deletions of one or more genes in Xp21. When deletions of adrenal hypoplasia (AHC), Duchenne muscular dystrophy (DMD), and chronic granulomatosis (CGD) loci are included, complex glycerol kinase deficiency (CGKD) can be diagnosed. We present a case of CGKD that was initially misdiagnosed and died during treatment in our hospital in terms of improving our understanding of the clinical features and diagnosis of this disease, as well as highlighting the need for more precise dosing of corticosteroid replacement therapy.

Case presentation

A 48-day-old full-term male infant was transferred to our medical center with global growth delay and persistent vomiting. Routine laboratory tests revealed hyperkalemia, hyponatremia, and a high level of creatine kinase. The initial diagnosis was adrenal cortical hyperplasia (ACH), then revised to adrenocortical insufficiency with a normal level of ACTH detected. After supplementing the routine lipid test and urinary glycerol test, CGKD was diagnosed clinically due to positive triglyceridemia and urinary glycerol, and the follow-up gene screening further confirmed the diagnosis. The boy kept thriving after corticosteroid replacement and salt supplementation. While levels of serum ACTH and cortisol decreased and remained low after corticosteroid replacement was administered. The patient died of acute type 2 respiratory failure and hypoglycemia after an acute upper respiratory tract infection, which may be the result of adrenal crisis after infection. Infants with CGKD have a poor prognosis, so physicians should administer regular follow-ups, and parents counseling during treatment to improve the survival of patients.

Conclusions

Overall, CGKD, although rare, cannot be easily excluded in children with persistent vomiting. Extensive blood tests can help to detect abnormal indicators. Adrenal crisis needs to be avoided as much as possible during corticosteroid replacement therapy.
Literature
1.
go back to reference Dipple KM, Zhang YH, Huang BL, McCabe LL, Dallongeville J, Inokuchi T, Kimura M, Marx HJ, Roederer GO, Shih V, et al. Glycerol kinase deficiency: evidence for complexity in a single gene disorder. Hum Genet. 2001;109(1):55–62.CrossRef Dipple KM, Zhang YH, Huang BL, McCabe LL, Dallongeville J, Inokuchi T, Kimura M, Marx HJ, Roederer GO, Shih V, et al. Glycerol kinase deficiency: evidence for complexity in a single gene disorder. Hum Genet. 2001;109(1):55–62.CrossRef
2.
go back to reference Sehgal A, Stack J. Complex glycerol kinase deficiency: an X-linked disorder associated with adrenal hypoplasia congenita. Indian J Pediatr. 2005;72(1):67–9.CrossRef Sehgal A, Stack J. Complex glycerol kinase deficiency: an X-linked disorder associated with adrenal hypoplasia congenita. Indian J Pediatr. 2005;72(1):67–9.CrossRef
3.
go back to reference Stanczak CM, Chen Z, Zhang YH, Nelson SF, McCabe ER. Deletion mapping in Xp21 for patients with complex glycerol kinase deficiency using SNP mapping arrays. Hum Mutat. 2007;28(3):235–42.CrossRef Stanczak CM, Chen Z, Zhang YH, Nelson SF, McCabe ER. Deletion mapping in Xp21 for patients with complex glycerol kinase deficiency using SNP mapping arrays. Hum Mutat. 2007;28(3):235–42.CrossRef
4.
go back to reference Hellerud C, Wramner N, Erikson A, Johansson A, Samuelson G, Lindstedt S. Glycerol kinase deficiency: follow-up during 20 years, genetics, biochemistry and prognosis. Acta Paediatr. 2004;93(7):911–21.CrossRef Hellerud C, Wramner N, Erikson A, Johansson A, Samuelson G, Lindstedt S. Glycerol kinase deficiency: follow-up during 20 years, genetics, biochemistry and prognosis. Acta Paediatr. 2004;93(7):911–21.CrossRef
5.
go back to reference Heide S, Afenjar A, Edery P, Sanlaville D, Keren B, Rouen A, Lavillaureix A, Hyon C, Doummar D, Siffroi JP, et al. Xp21 deletion in female patients with intellectual disability: Two new cases and a review of the literature. Eur J Med Genet. 2015;58(6–7):341–5.CrossRef Heide S, Afenjar A, Edery P, Sanlaville D, Keren B, Rouen A, Lavillaureix A, Hyon C, Doummar D, Siffroi JP, et al. Xp21 deletion in female patients with intellectual disability: Two new cases and a review of the literature. Eur J Med Genet. 2015;58(6–7):341–5.CrossRef
6.
go back to reference Ramanjam V, Delport S, Wilmshurst JM. The diagnostic difficulties of complex glycerol kinase deficiency. J Child Neurol. 2010;25(10):1269–71.CrossRef Ramanjam V, Delport S, Wilmshurst JM. The diagnostic difficulties of complex glycerol kinase deficiency. J Child Neurol. 2010;25(10):1269–71.CrossRef
7.
go back to reference Zong XN, Li H. Construction of a new growth references for China based on urban Chinese children: comparison with the WHO growth standards. PLoS ONE. 2013;8(3):e59569.CrossRef Zong XN, Li H. Construction of a new growth references for China based on urban Chinese children: comparison with the WHO growth standards. PLoS ONE. 2013;8(3):e59569.CrossRef
8.
go back to reference Falsaperla R, Romeo G, Sorge A, Bianchini R, DiGiorgio A, Trigilia T, Mattina T, Connolly AM. Mental retardation and early onset of weakness in a girl with a dystrophinopathy and a large Xp21-23 deletion. J Child Neurol. 2003;18(1):79–81.CrossRef Falsaperla R, Romeo G, Sorge A, Bianchini R, DiGiorgio A, Trigilia T, Mattina T, Connolly AM. Mental retardation and early onset of weakness in a girl with a dystrophinopathy and a large Xp21-23 deletion. J Child Neurol. 2003;18(1):79–81.CrossRef
9.
go back to reference Fries MH, Lebo RV, Schonberg SA, Golabi M, Seltzer WK, Gitelman SE, Golbus MS. Mental retardation locus in Xp21 chromosome microdeletion. Am J Med Genet. 1993;46(4):363–8.CrossRef Fries MH, Lebo RV, Schonberg SA, Golabi M, Seltzer WK, Gitelman SE, Golbus MS. Mental retardation locus in Xp21 chromosome microdeletion. Am J Med Genet. 1993;46(4):363–8.CrossRef
10.
go back to reference Shaikh MG, Boyes L, Kingston H, Collins R, Besley GT, Padmakumar B, Ismayl O, Hughes I, Hall CM, Hellerud C, et al. Skewed X inactivation is associated with phenotype in a female with adrenal hypoplasia congenita. J Med Genet. 2008;45(9):e1.CrossRef Shaikh MG, Boyes L, Kingston H, Collins R, Besley GT, Padmakumar B, Ismayl O, Hughes I, Hall CM, Hellerud C, et al. Skewed X inactivation is associated with phenotype in a female with adrenal hypoplasia congenita. J Med Genet. 2008;45(9):e1.CrossRef
11.
go back to reference Goussault Y, Turpin E, Neel D, Dreux C, Chanu B, Bakir R, Rouffy J. ‘Pseudohypertriglyceridemia’ caused by hyperglycerolemia due to congenital enzyme deficiency. Clin Chim Acta. 1982;123(3):269–74.CrossRef Goussault Y, Turpin E, Neel D, Dreux C, Chanu B, Bakir R, Rouffy J. ‘Pseudohypertriglyceridemia’ caused by hyperglycerolemia due to congenital enzyme deficiency. Clin Chim Acta. 1982;123(3):269–74.CrossRef
12.
go back to reference Sevim U, Fatma D, Ihsan E, Gulay C, Nevin B. A neonate with contiguous deletion syndrome in XP21. J Pediatr Endocrinol Metab. 2011;24(11–12):1095–8.PubMed Sevim U, Fatma D, Ihsan E, Gulay C, Nevin B. A neonate with contiguous deletion syndrome in XP21. J Pediatr Endocrinol Metab. 2011;24(11–12):1095–8.PubMed
13.
go back to reference El-Maouche D, Arlt W, Merke DP. Congenital adrenal hyperplasia. Lancet. 2017;390(10108):2194–210.CrossRef El-Maouche D, Arlt W, Merke DP. Congenital adrenal hyperplasia. Lancet. 2017;390(10108):2194–210.CrossRef
14.
go back to reference Loureiro M, Reis F, Robalo B, Pereira C, Sampaio L. Adrenal hypoplasia congenita: a rare cause of primary adrenal insufficiency and hypogonadotropic hypogonadism. Pediatr Rep. 2015;7(3):5936.CrossRef Loureiro M, Reis F, Robalo B, Pereira C, Sampaio L. Adrenal hypoplasia congenita: a rare cause of primary adrenal insufficiency and hypogonadotropic hypogonadism. Pediatr Rep. 2015;7(3):5936.CrossRef
15.
go back to reference Yiu EM, Kornberg AJ. Duchenne muscular dystrophy. J Paediatr Child Health. 2015;51(8):759–64.CrossRef Yiu EM, Kornberg AJ. Duchenne muscular dystrophy. J Paediatr Child Health. 2015;51(8):759–64.CrossRef
16.
go back to reference Nardes F, Araujo AP, Ribeiro MG. Mental retardation in Duchenne muscular dystrophy. J Pediatr (Rio J). 2012;88(1):6–16.CrossRef Nardes F, Araujo AP, Ribeiro MG. Mental retardation in Duchenne muscular dystrophy. J Pediatr (Rio J). 2012;88(1):6–16.CrossRef
17.
go back to reference Korkut S, Bastug O, Raygada M, Hatipoglu N, Kurtoglu S, Kendirci M, Lyssikatos C, Stratakis CA. Complex glycerol kinase deficiency and adrenocortical insufficiency in two neonates. J Clin Res Pediatr Endocrinol. 2016;8(4):468–71.CrossRef Korkut S, Bastug O, Raygada M, Hatipoglu N, Kurtoglu S, Kendirci M, Lyssikatos C, Stratakis CA. Complex glycerol kinase deficiency and adrenocortical insufficiency in two neonates. J Clin Res Pediatr Endocrinol. 2016;8(4):468–71.CrossRef
18.
go back to reference Sharma R, Seth A. Congenital adrenal hyperplasia: issues in diagnosis and treatment in children. Indian J Pediatr. 2014;81(2):178–85.CrossRef Sharma R, Seth A. Congenital adrenal hyperplasia: issues in diagnosis and treatment in children. Indian J Pediatr. 2014;81(2):178–85.CrossRef
Metadata
Title
Delayed diagnosis of complex glycerol kinase deficiency in a Chinese male infant: a case report
Authors
Na Tao
Xiaomei Liu
Yueqi Chen
Meiyuan Sun
Fang Xu
Yanfang Su
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2022
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-022-03568-9

Other articles of this Issue 1/2022

BMC Pediatrics 1/2022 Go to the issue