Skip to main content
Top
Published in: BMC Pediatrics 1/2020

01-12-2020 | Obesity | Research article

Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis

Authors: Aleš Gába, Željko Pedišić, Nikola Štefelová, Jan Dygrýn, Karel Hron, Dorothea Dumuid, Mark Tremblay

Published in: BMC Pediatrics | Issue 1/2020

Login to get access

Abstract

Background

Between-person differences in sedentary patterns should be considered to understand the role of sedentary behavior (SB) in the development of childhood obesity. This study took a novel approach based on compositional data analysis to examine associations between SB patterns and adiposity and investigate differences in adiposity associated with time reallocation between time spent in sedentary bouts of different duration and physical activity.

Methods

An analysis of cross-sectional data was performed in 425 children aged 7–12 years (58% girls). Waking behaviors were assessed using ActiGraph GT3X accelerometer for seven consecutive days. Multi-frequency bioimpedance measurement was used to determine adiposity. Compositional regression models with robust estimators were used to analyze associations between sedentary patterns and adiposity markers. To examine differences in adiposity associated with time reallocation, we used the compositional isotemporal substitution model.

Results

Significantly higher fat mass percentage (FM%; βilr1 = 0.18; 95% CI: 0.01, 0.34; p = 0.040) and visceral adipose tissue (VAT; βilr1 = 0.37; 95% CI: 0.03, 0.71; p = 0.034) were associated with time spent in middle sedentary bouts in duration of 10–29 min (relative to remaining behaviors). No significant associations were found for short (< 10 min) and long sedentary bouts (≥30 min). Substituting the time spent in total SB with moderate-to-vigorous physical activity (MVPA) was associated with a decrease in VAT. Substituting 1 h/week of the time spent in middle sedentary bouts with MVPA was associated with 2.9% (95% CI: 1.2, 4.6), 3.4% (95% CI: 1.2, 5.5), and 6.1% (95% CI: 2.9, 9.2) lower FM%, fat mass index, and VAT, respectively. Moreover, substituting 2 h/week of time spent in middle sedentary bouts with short sedentary bouts was associated with 3.5% (95% CI: 0.02, 6.9) lower FM%.

Conclusions

Our findings suggest that adiposity status could be improved by increasing MVPA at the expense of time spent in middle sedentary bouts. Some benefits to adiposity may also be expected from replacing middle sedentary bouts with short sedentary bouts, that is, by taking standing or activity breaks more often. These findings may help design more effective interventions to prevent and control childhood obesity.
Appendix
Available only for authorised users
Literature
1.
go back to reference NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):16–22. NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):16–22.
2.
go back to reference Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92(2):251–65.CrossRefPubMed Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92(2):251–65.CrossRefPubMed
3.
go back to reference Sharma V, Coleman S, Nixon J, Sharples L, Hamilton-Shield J, Rutter H, et al. A systematic review and meta-analysis estimating the population prevalence of comorbidities in children and adolescents aged 5 to 18 years. Obes Rev. 2019;20(10):1341.CrossRefPubMedPubMedCentral Sharma V, Coleman S, Nixon J, Sharples L, Hamilton-Shield J, Rutter H, et al. A systematic review and meta-analysis estimating the population prevalence of comorbidities in children and adolescents aged 5 to 18 years. Obes Rev. 2019;20(10):1341.CrossRefPubMedPubMedCentral
4.
go back to reference Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc Health. 2020;4(1):23–35.CrossRefPubMedPubMedCentral Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc Health. 2020;4(1):23–35.CrossRefPubMedPubMedCentral
5.
go back to reference Tremblay M, LeBlanc A, Kho M, Saunders T, Larouche R, Colley R, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8(1):98.CrossRefPubMedPubMedCentral Tremblay M, LeBlanc A, Kho M, Saunders T, Larouche R, Colley R, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8(1):98.CrossRefPubMedPubMedCentral
6.
go back to reference Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary behavior research network (SBRN) – terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.CrossRefPubMedPubMedCentral Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary behavior research network (SBRN) – terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.CrossRefPubMedPubMedCentral
7.
go back to reference Rey-López JP, Vicente-Rodríguez G, Biosca M, Moreno LA. Sedentary behaviour and obesity development in children and adolescents. Nutr Metab Cardiovasc Dis. 2008;18(3):242–51.CrossRefPubMed Rey-López JP, Vicente-Rodríguez G, Biosca M, Moreno LA. Sedentary behaviour and obesity development in children and adolescents. Nutr Metab Cardiovasc Dis. 2008;18(3):242–51.CrossRefPubMed
8.
go back to reference de Rezende LFM, Lopes MR, Rey-Lopez JP, Matsudo VKR, Luiz OD. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9(8):7. de Rezende LFM, Lopes MR, Rey-Lopez JP, Matsudo VKR, Luiz OD. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9(8):7.
9.
go back to reference Aubert S, Barnes JD, Abdeta C, Abi Nader P, Adeniyi AF, Aguilar-Farias N, et al. Global matrix 3.0 physical activity report card grades for children and youth: results and analysis from 49 countries. J Phys Act Health. 2018;15(S2):S251–73.CrossRefPubMed Aubert S, Barnes JD, Abdeta C, Abi Nader P, Adeniyi AF, Aguilar-Farias N, et al. Global matrix 3.0 physical activity report card grades for children and youth: results and analysis from 49 countries. J Phys Act Health. 2018;15(S2):S251–73.CrossRefPubMed
10.
go back to reference Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, et al. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol. 2012;41(5):1460–71.CrossRefPubMedPubMedCentral Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, et al. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol. 2012;41(5):1460–71.CrossRefPubMedPubMedCentral
11.
go back to reference Cliff DP, Hesketh KD, Vella SA, Hinkley T, Tsiros MD, Ridgers ND, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):330–44.CrossRefPubMed Cliff DP, Hesketh KD, Vella SA, Hinkley T, Tsiros MD, Ridgers ND, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17(4):330–44.CrossRefPubMed
12.
go back to reference Broadney MM, Belcher BR, Berrigan DA, Brychta RJ, Tigner IL Jr, Shareef F, et al. Effects of interrupting sedentary behavior with short bouts of moderate physical activity on glucose tolerance in children with overweight and obesity: a randomized crossover trial. Diabetes Care. 2018;41(10):2220–8.CrossRefPubMedPubMedCentral Broadney MM, Belcher BR, Berrigan DA, Brychta RJ, Tigner IL Jr, Shareef F, et al. Effects of interrupting sedentary behavior with short bouts of moderate physical activity on glucose tolerance in children with overweight and obesity: a randomized crossover trial. Diabetes Care. 2018;41(10):2220–8.CrossRefPubMedPubMedCentral
13.
go back to reference Janssen X, Mann KD, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, et al. Development of sedentary behavior across childhood and adolescence: longitudinal analysis of the Gateshead millennium study. Int J Behav Nutr Phys Act. 2016;13(1):88.CrossRefPubMedPubMedCentral Janssen X, Mann KD, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, et al. Development of sedentary behavior across childhood and adolescence: longitudinal analysis of the Gateshead millennium study. Int J Behav Nutr Phys Act. 2016;13(1):88.CrossRefPubMedPubMedCentral
14.
go back to reference Saunders TJ, Tremblay MS, Mathieu M-È, Henderson M, O’Loughlin J, Tremblay A, et al. Associations of sedentary behavior, sedentary bouts and breaks in sedentary time with Cardiometabolic risk in children with a family history of obesity. PLoS One. 2013;8(11):e79143.CrossRefPubMedPubMedCentral Saunders TJ, Tremblay MS, Mathieu M-È, Henderson M, O’Loughlin J, Tremblay A, et al. Associations of sedentary behavior, sedentary bouts and breaks in sedentary time with Cardiometabolic risk in children with a family history of obesity. PLoS One. 2013;8(11):e79143.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Colley RC, Garriguet D, Janssen I, Wong SL, Saunders TJ, Carson V, et al. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian health measures survey. BMC Public Health. 2013;13(1):200.CrossRefPubMedPubMedCentral Colley RC, Garriguet D, Janssen I, Wong SL, Saunders TJ, Carson V, et al. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian health measures survey. BMC Public Health. 2013;13(1):200.CrossRefPubMedPubMedCentral
17.
go back to reference Carson V, Stone M, Faulkner G. Patterns of sedentary behavior and weight status among children. Pediatr Exerc Sci. 2014;26(1):95–102.CrossRefPubMed Carson V, Stone M, Faulkner G. Patterns of sedentary behavior and weight status among children. Pediatr Exerc Sci. 2014;26(1):95–102.CrossRefPubMed
18.
go back to reference Chastin SFM, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10):e0139984.CrossRefPubMedPubMedCentral Chastin SFM, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10):e0139984.CrossRefPubMedPubMedCentral
19.
go back to reference Štefelová N, Dygrýn J, Hron K, Gába A, Rubín L, Palarea-Albaladejo J. Robust compositional analysis of physical activity and sedentary behaviour data. Int J Environ Res Public Health. 2018;15(10):2248.CrossRefPubMedCentral Štefelová N, Dygrýn J, Hron K, Gába A, Rubín L, Palarea-Albaladejo J. Robust compositional analysis of physical activity and sedentary behaviour data. Int J Environ Res Public Health. 2018;15(10):2248.CrossRefPubMedCentral
20.
go back to reference Pedisic Z, Dumuid D, Olds T. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49:2.CrossRef Pedisic Z, Dumuid D, Olds T. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49:2.CrossRef
21.
go back to reference Pedisic Z. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research – the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;46(1):135–46. Pedisic Z. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research – the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;46(1):135–46.
22.
go back to reference Dumuid D, Stanford TE, Martin-Fernández J-A, Pedišić Ž, Maher CA, Lewis LK, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res. 2017;27(12):3726–38.CrossRefPubMed Dumuid D, Stanford TE, Martin-Fernández J-A, Pedišić Ž, Maher CA, Lewis LK, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res. 2017;27(12):3726–38.CrossRefPubMed
23.
go back to reference Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519–27.CrossRefPubMedPubMedCentral Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519–27.CrossRefPubMedPubMedCentral
24.
go back to reference Dumuid D, Pedišić Ž, Stanford TE, Martín-Fernández J-A, Hron K, Maher CA, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2018;28(3):846–57.CrossRef Dumuid D, Pedišić Ž, Stanford TE, Martín-Fernández J-A, Hron K, Maher CA, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2018;28(3):846–57.CrossRef
25.
go back to reference Gába A, Mitáš J, Jakubec L. Associations between accelerometer-measured physical activity and body fatness in school-aged children. Environ Health Prev Med. 2017;22:1–8.CrossRef Gába A, Mitáš J, Jakubec L. Associations between accelerometer-measured physical activity and body fatness in school-aged children. Environ Health Prev Med. 2017;22:1–8.CrossRef
26.
go back to reference Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.CrossRefPubMed Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.CrossRefPubMed
27.
go back to reference Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.CrossRefPubMed Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.CrossRefPubMed
28.
go back to reference Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, et al. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6-18 years. Pediatr Int. 2009;51(2):263–8.CrossRefPubMed Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, et al. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6-18 years. Pediatr Int. 2009;51(2):263–8.CrossRefPubMed
29.
go back to reference Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R. Modeling and analysis of compositional data. Chichester: Wiley; 2015. Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R. Modeling and analysis of compositional data. Chichester: Wiley; 2015.
30.
go back to reference Filzmoser P, Hron K, Templ M. Applied compositional data analysis. 1st ed. Cham: Springer International Publishing; 2018.CrossRef Filzmoser P, Hron K, Templ M. Applied compositional data analysis. 1st ed. Cham: Springer International Publishing; 2018.CrossRef
31.
go back to reference Martín-Fernández JA, Barceló-Vidal C, Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geol. 2003;35(3):253–78.CrossRef Martín-Fernández JA, Barceló-Vidal C, Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geol. 2003;35(3):253–78.CrossRef
32.
go back to reference Spruyt K, Molfese DL, Gozal D. Sleep duration, sleep regularity, body weight, and metabolic homeostasis in school-aged children. Pediatrics. 2011;127(2):e345–52.CrossRefPubMedPubMedCentral Spruyt K, Molfese DL, Gozal D. Sleep duration, sleep regularity, body weight, and metabolic homeostasis in school-aged children. Pediatrics. 2011;127(2):e345–52.CrossRefPubMedPubMedCentral
33.
go back to reference Diaz KM, Howard VJ, Hutto B, Colabianchi N, Vena JE, Blair SN, et al. Patterns of sedentary behavior in US middle-age and older adults: the REGARDS study. Med Sci Sports Exerc. 2016;48(3):430–8.CrossRefPubMedPubMedCentral Diaz KM, Howard VJ, Hutto B, Colabianchi N, Vena JE, Blair SN, et al. Patterns of sedentary behavior in US middle-age and older adults: the REGARDS study. Med Sci Sports Exerc. 2016;48(3):430–8.CrossRefPubMedPubMedCentral
35.
go back to reference Hubbard K, Economos CD, Bakun P, Boulos R, Chui K, Mueller MP, et al. Disparities in moderate-to-vigorous physical activity among girls and overweight and obese schoolchildren during school- and out-of-school time. Int J Behav Nutr Phys Act. 2016;13(1):39.CrossRefPubMedPubMedCentral Hubbard K, Economos CD, Bakun P, Boulos R, Chui K, Mueller MP, et al. Disparities in moderate-to-vigorous physical activity among girls and overweight and obese schoolchildren during school- and out-of-school time. Int J Behav Nutr Phys Act. 2016;13(1):39.CrossRefPubMedPubMedCentral
36.
go back to reference Olds TS, Maher CA, Ridley K, Kittel DM. Descriptive epidemiology of screen and non-screen sedentary time in adolescents: a cross sectional study. Int J Behav Nutr Phys Act. 2010;7(1):92.CrossRefPubMedPubMedCentral Olds TS, Maher CA, Ridley K, Kittel DM. Descriptive epidemiology of screen and non-screen sedentary time in adolescents: a cross sectional study. Int J Behav Nutr Phys Act. 2010;7(1):92.CrossRefPubMedPubMedCentral
37.
go back to reference Fletcher EA, Salmon J, McNaughton SA, Orellana L, Wadley GD, Bruce C, et al. Effects of breaking up sitting on adolescents’ postprandial glucose after consuming meals varying in energy: a cross-over randomised trial. J Sci Med Sport. 2018;21(3):280–5.CrossRefPubMed Fletcher EA, Salmon J, McNaughton SA, Orellana L, Wadley GD, Bruce C, et al. Effects of breaking up sitting on adolescents’ postprandial glucose after consuming meals varying in energy: a cross-over randomised trial. J Sci Med Sport. 2018;21(3):280–5.CrossRefPubMed
38.
go back to reference Betts JA, Smith HA, Johnson-Bonson DA, Ellis TI, Dagnall J, Hengist A, et al. The energy cost of sitting versus standing naturally in man. Med Sci Sports Exerc. 2019;51(4):726–33.CrossRefPubMed Betts JA, Smith HA, Johnson-Bonson DA, Ellis TI, Dagnall J, Hengist A, et al. The energy cost of sitting versus standing naturally in man. Med Sci Sports Exerc. 2019;51(4):726–33.CrossRefPubMed
39.
go back to reference Basterfield L, Adamson AJ, Frary JK, Parkinson KN, Pearce MS, Reilly JJ. Longitudinal study of physical activity and sedentary behavior in children. Pediatrics. 2010;127(1):e24–30.CrossRefPubMed Basterfield L, Adamson AJ, Frary JK, Parkinson KN, Pearce MS, Reilly JJ. Longitudinal study of physical activity and sedentary behavior in children. Pediatrics. 2010;127(1):e24–30.CrossRefPubMed
40.
go back to reference Fairclough SJ, Dumuid D, Mackintosh KA, Stone G, Dagger R, Stratton G, et al. Adiposity, fitness, health-related quality of life and the reallocation of time between children's school day activity behaviours: a compositional data analysis. Prev Med Rep. 2018;11:254–61.CrossRefPubMedPubMedCentral Fairclough SJ, Dumuid D, Mackintosh KA, Stone G, Dagger R, Stratton G, et al. Adiposity, fitness, health-related quality of life and the reallocation of time between children's school day activity behaviours: a compositional data analysis. Prev Med Rep. 2018;11:254–61.CrossRefPubMedPubMedCentral
41.
go back to reference Dumuid D, Stanford TE, Pedišić Ž, Maher C, Lewis LK, Martín-Fernández J-A, et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: a compositional data analysis approach. BMC Public Health. 2018;18(1):311.CrossRefPubMedPubMedCentral Dumuid D, Stanford TE, Pedišić Ž, Maher C, Lewis LK, Martín-Fernández J-A, et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: a compositional data analysis approach. BMC Public Health. 2018;18(1):311.CrossRefPubMedPubMedCentral
42.
go back to reference Dumuid D, Wake M, Clifford S, Burgner D, Carlin JB, Mensah FK, et al. The Association of the Body Composition of children with 24-hour activity composition. J Pediatr. 2019;208:43.CrossRefPubMed Dumuid D, Wake M, Clifford S, Burgner D, Carlin JB, Mensah FK, et al. The Association of the Body Composition of children with 24-hour activity composition. J Pediatr. 2019;208:43.CrossRefPubMed
43.
go back to reference Fairclough SJ, Dumuid D, Taylor S, Curry W, McGrane B, Stratton G, et al. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: an analysis of compositional data. Int J Behav Nutr Phys Act. 2017;14(1):64.CrossRefPubMedPubMedCentral Fairclough SJ, Dumuid D, Taylor S, Curry W, McGrane B, Stratton G, et al. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: an analysis of compositional data. Int J Behav Nutr Phys Act. 2017;14(1):64.CrossRefPubMedPubMedCentral
44.
go back to reference Talarico R, Janssen I. Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children. Int J Obes. 2018;42:1508–14.CrossRef Talarico R, Janssen I. Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children. Int J Obes. 2018;42:1508–14.CrossRef
45.
go back to reference Cappuccio FP, Taggart FM, Kandala N-B, Currie A, Peile E, Stranges S, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–26.CrossRefPubMedPubMedCentral Cappuccio FP, Taggart FM, Kandala N-B, Currie A, Peile E, Stranges S, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–26.CrossRefPubMedPubMedCentral
46.
go back to reference Tremblay M, Carson V, Chaput J-P, Connor Gorber S, Dinh T, Duggan M, et al. Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S311–27.CrossRefPubMed Tremblay M, Carson V, Chaput J-P, Connor Gorber S, Dinh T, Duggan M, et al. Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S311–27.CrossRefPubMed
47.
go back to reference Australian Government, Department of Health. Australian 24-hour movement guidelines for children and young people (5–17 years) – an integration of physical activity, sedentary behaviour and sleep; 2019. Australian Government, Department of Health. Australian 24-hour movement guidelines for children and young people (5–17 years) – an integration of physical activity, sedentary behaviour and sleep; 2019.
48.
go back to reference Ministry of Health. Sit less, move more, sleep well: physical activity guidelines for children and young people. New Zeland: Ministry of Health; 2017. Ministry of Health. Sit less, move more, sleep well: physical activity guidelines for children and young people. New Zeland: Ministry of Health; 2017.
49.
go back to reference World Health Organization. Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age, vol. 33. Geneva: World Health Organization; 2019. World Health Organization. Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age, vol. 33. Geneva: World Health Organization; 2019.
50.
go back to reference Yang WY, Williams LT, Collins C, Siew Swee CW. The relationship between dietary patterns and overweight and obesity in children of Asian developing countries: a systematic review. JBI Libr Syst Rev. 2012;10(58):4568–99.PubMed Yang WY, Williams LT, Collins C, Siew Swee CW. The relationship between dietary patterns and overweight and obesity in children of Asian developing countries: a systematic review. JBI Libr Syst Rev. 2012;10(58):4568–99.PubMed
51.
go back to reference Emmett PM, Jones LR. Diet, growth, and obesity development throughout childhood in the Avon longitudinal study of parents and children. Nutr Rev. 2015;73(Suppl 3):175–206.CrossRefPubMedPubMedCentral Emmett PM, Jones LR. Diet, growth, and obesity development throughout childhood in the Avon longitudinal study of parents and children. Nutr Rev. 2015;73(Suppl 3):175–206.CrossRefPubMedPubMedCentral
52.
go back to reference Leech RM, McNaughton SA, Timperio A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review. Int J Behav Nutr Phys Act. 2014;11(1):4.CrossRefPubMedPubMedCentral Leech RM, McNaughton SA, Timperio A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review. Int J Behav Nutr Phys Act. 2014;11(1):4.CrossRefPubMedPubMedCentral
53.
go back to reference Pedišić Ž, Bauman A. Accelerometer-based measures in physical activity surveillance: current practices and issues. Br J Sports Med. 2015;49(4):219.CrossRefPubMed Pedišić Ž, Bauman A. Accelerometer-based measures in physical activity surveillance: current practices and issues. Br J Sports Med. 2015;49(4):219.CrossRefPubMed
54.
go back to reference van der Berg JD, Stehouwer CDA, Bosma H, Caserotti P, Eiriksdottir G, Arnardottir NY, et al. Dynamic sitting: measurement and associations with metabolic health. J Sports Sci. 2019;37:1–9. van der Berg JD, Stehouwer CDA, Bosma H, Caserotti P, Eiriksdottir G, Arnardottir NY, et al. Dynamic sitting: measurement and associations with metabolic health. J Sports Sci. 2019;37:1–9.
Metadata
Title
Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis
Authors
Aleš Gába
Željko Pedišić
Nikola Štefelová
Jan Dygrýn
Karel Hron
Dorothea Dumuid
Mark Tremblay
Publication date
01-12-2020
Publisher
BioMed Central
Keywords
Obesity
Obesity
Published in
BMC Pediatrics / Issue 1/2020
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-02036-6

Other articles of this Issue 1/2020

BMC Pediatrics 1/2020 Go to the issue