Skip to main content
Top
Published in: BMC Pediatrics 1/2016

Open Access 01-12-2016 | Research article

Census tract based income level and lipid levels in urban pediatric primary care: a retrospective study

Authors: Enid E. Martinez, Peter W. Forbes, Sharon E. O’Brien, Sarah D. de Ferranti

Published in: BMC Pediatrics | Issue 1/2016

Login to get access

Abstract

Background

Lower socioeconomic status has been associated with adverse lipid levels in adult populations. Childhood dyslipidemia is a risk factor for future cardiovascular disease. However, studies examining relationships between socioeconomic indicators and lipid levels in children are limited. To examine the relationship between income level and lipid levels in childhood.

Methods

We conducted a retrospective chart review of primary care patients, ages 2 to 18 years, who had lipid levels drawn at two large pediatric practices in Boston, MA between August 01, 2008 and August 31, 2010. Income level was determined using geocoding census tract data. Analysis was performed using t-test, Anova and Spearman correlation coefficients. BMI percentile, age, sex, race/ethnicity, and site were adjusted for on multivariate analyses.

Results

Reviewing 930 charts of patients with measured lipid levels, 730 had a valid address, no previously diagnosed lipid disorder and met other study eligibility criteria. Mean total cholesterol level did not vary by income level (low 155.5 mg/dl ±26.9, moderate 153.5 mg/dl ±30.4, middle 155.3 mg/dl ±26.6 and high income 155.5 mg/dl ±27.9; p = .87) on multivariate analysis. Income level was not related to LDL, HDL, or triglycerides.

Conclusions

In this analysis of children cared for in two urban pediatric primary practices, there was no association between income level determined by census tract and lipid levels in childhood. If confirmed in prospective investigations in other geographical locations, income level may not be a key driver of childhood lipid levels.
Literature
1.
go back to reference Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307:483–90.CrossRefPubMed Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307:483–90.CrossRefPubMed
2.
go back to reference Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics. 1999;103:1175–82.CrossRefPubMed Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics. 1999;103:1175–82.CrossRefPubMed
3.
go back to reference Kit BK, Carroll MD, Lacher DA, Sorlie PD, DeJesus JM, Ogden C. Trends in serum lipids among US youths aged 6 to 19 years, 1988–2010. JAMA. 2012;308:591–600.CrossRefPubMed Kit BK, Carroll MD, Lacher DA, Sorlie PD, DeJesus JM, Ogden C. Trends in serum lipids among US youths aged 6 to 19 years, 1988–2010. JAMA. 2012;308:591–600.CrossRefPubMed
4.
go back to reference McNiece KL, Poffenbarger TS, Turner JL, Franco KD, Sorof JM, Portman RJ. Prevalence of hypertension and pre-hypertension among adolescents. J Pediatr. 2007;150:640–4. 4 e1.CrossRefPubMed McNiece KL, Poffenbarger TS, Turner JL, Franco KD, Sorof JM, Portman RJ. Prevalence of hypertension and pre-hypertension among adolescents. J Pediatr. 2007;150:640–4. 4 e1.CrossRefPubMed
5.
go back to reference Messiah SE, Arheart KL, Natale RA, Hlaing WM, Lipshultz SE, Miller TL. BMI, waist circumference, and selected cardiovascular disease risk factors among preschool-age children. Obesity. 2012;20:1942–9.CrossRefPubMed Messiah SE, Arheart KL, Natale RA, Hlaing WM, Lipshultz SE, Miller TL. BMI, waist circumference, and selected cardiovascular disease risk factors among preschool-age children. Obesity. 2012;20:1942–9.CrossRefPubMed
6.
go back to reference Hickman TB, Briefel RR, Carroll MD, Rifkind BM, Cleeman JI, Maurer KR, et al. Distributions and trends of serum lipid levels among United States children and adolescents ages 4–19 years: data from the Third National Health and Nutrition Examination Survey. Prev Med. 1998;27:879–90.CrossRefPubMed Hickman TB, Briefel RR, Carroll MD, Rifkind BM, Cleeman JI, Maurer KR, et al. Distributions and trends of serum lipid levels among United States children and adolescents ages 4–19 years: data from the Third National Health and Nutrition Examination Survey. Prev Med. 1998;27:879–90.CrossRefPubMed
7.
go back to reference Can M, Piskin E, Guven B, Acikgoz S, Mungan G. Evaluation of serum lipid levels in children. Pediatr Cardiol. 2013;34:566–9.CrossRefPubMed Can M, Piskin E, Guven B, Acikgoz S, Mungan G. Evaluation of serum lipid levels in children. Pediatr Cardiol. 2013;34:566–9.CrossRefPubMed
8.
go back to reference Berenson GS. Childhood risk factors predict adult risk associated with subclinical cardiovascular disease. The Bogalusa Heart Study. Am J Cardiol. 2002;90:3L–7L.CrossRefPubMed Berenson GS. Childhood risk factors predict adult risk associated with subclinical cardiovascular disease. The Bogalusa Heart Study. Am J Cardiol. 2002;90:3L–7L.CrossRefPubMed
9.
go back to reference Berenson GS, Srinivasan SR, Bao W, Newman 3rd WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338:1650–6.CrossRefPubMed Berenson GS, Srinivasan SR, Bao W, Newman 3rd WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338:1650–6.CrossRefPubMed
10.
go back to reference Petkeviciene J, Klumbiene J, Kriaucioniene V, Raskiliene A, Sakyte E, Ceponiene I. Anthropometric measurements in childhood and prediction of cardiovascular risk factors in adulthood: Kaunas cardiovascular risk cohort study. BMC Public Health. 2015;15:218.CrossRefPubMedPubMedCentral Petkeviciene J, Klumbiene J, Kriaucioniene V, Raskiliene A, Sakyte E, Ceponiene I. Anthropometric measurements in childhood and prediction of cardiovascular risk factors in adulthood: Kaunas cardiovascular risk cohort study. BMC Public Health. 2015;15:218.CrossRefPubMedPubMedCentral
11.
go back to reference Ferrie JE, Martikainen P, Shipley MJ, Marmot MG. Self-reported economic difficulties and coronary events in men: evidence from the Whitehall II study. Int J Epidemiol. 2005;34:640–8.CrossRefPubMed Ferrie JE, Martikainen P, Shipley MJ, Marmot MG. Self-reported economic difficulties and coronary events in men: evidence from the Whitehall II study. Int J Epidemiol. 2005;34:640–8.CrossRefPubMed
12.
go back to reference Chichlowska KL, Rose KM, Diez-Roux AV, Golden SH, McNeill AM, Heiss G. Individual and neighborhood socioeconomic status characteristics and prevalence of metabolic syndrome: the Atherosclerosis Risk in Communities (ARIC) Study. Psychosom Med. 2008;70:986–92.CrossRefPubMedPubMedCentral Chichlowska KL, Rose KM, Diez-Roux AV, Golden SH, McNeill AM, Heiss G. Individual and neighborhood socioeconomic status characteristics and prevalence of metabolic syndrome: the Atherosclerosis Risk in Communities (ARIC) Study. Psychosom Med. 2008;70:986–92.CrossRefPubMedPubMedCentral
13.
go back to reference Goodman E, McEwen BS, Huang B, Dolan LM, Adler NE. Social inequalities in biomarkers of cardiovascular risk in adolescence. Psychosom Med. 2005;67:9–15.CrossRefPubMed Goodman E, McEwen BS, Huang B, Dolan LM, Adler NE. Social inequalities in biomarkers of cardiovascular risk in adolescence. Psychosom Med. 2005;67:9–15.CrossRefPubMed
14.
go back to reference Ali MK, Bullard KM, Beckles GL, Stevens MR, Barker L, Narayan KM, et al. Household income and cardiovascular disease risks in U.S. children and young adults: analyses from NHANES 1999–2008. Diabetes Care. 2011;34:1998–2004.CrossRefPubMedPubMedCentral Ali MK, Bullard KM, Beckles GL, Stevens MR, Barker L, Narayan KM, et al. Household income and cardiovascular disease risks in U.S. children and young adults: analyses from NHANES 1999–2008. Diabetes Care. 2011;34:1998–2004.CrossRefPubMedPubMedCentral
15.
go back to reference Tester JM, Laraia BA, Leung CW, Mietus-Snyder ML. Dyslipidemia and Food Security in Low-Income US Adolescents: National Health and Nutrition Examination Survey, 2003–2010. Prev Chronic Dis. 2016;13:E22.CrossRefPubMedPubMedCentral Tester JM, Laraia BA, Leung CW, Mietus-Snyder ML. Dyslipidemia and Food Security in Low-Income US Adolescents: National Health and Nutrition Examination Survey, 2003–2010. Prev Chronic Dis. 2016;13:E22.CrossRefPubMedPubMedCentral
16.
go back to reference McGrath JJ, Matthews KA, Brady SS. Individual versus neighborhood socioeconomic status and race as predictors of adolescent ambulatory blood pressure and heart rate. Soc Sci Med. 2006;63:1442–53.CrossRefPubMed McGrath JJ, Matthews KA, Brady SS. Individual versus neighborhood socioeconomic status and race as predictors of adolescent ambulatory blood pressure and heart rate. Soc Sci Med. 2006;63:1442–53.CrossRefPubMed
17.
go back to reference Resnicow K, Morley-Kotchen J, Wynder E. Plasma cholesterol levels of 6585 children in the United States: results of the know your body screening in five states. Pediatrics. 1989;84:969–76.PubMed Resnicow K, Morley-Kotchen J, Wynder E. Plasma cholesterol levels of 6585 children in the United States: results of the know your body screening in five states. Pediatrics. 1989;84:969–76.PubMed
18.
go back to reference Frerichs RR, Srinivasan SR, Webber LS, Berenson GR. Serum cholesterol and triglyceride levels in 3,446 children from a biracial community: the Bogalusa Heart Study. Circulation. 1976;54:302–9.CrossRefPubMed Frerichs RR, Srinivasan SR, Webber LS, Berenson GR. Serum cholesterol and triglyceride levels in 3,446 children from a biracial community: the Bogalusa Heart Study. Circulation. 1976;54:302–9.CrossRefPubMed
19.
go back to reference Galobardes B, Smith GD, Lynch JW. Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. Ann Epidemiol. 2006;16:91–104.CrossRefPubMed Galobardes B, Smith GD, Lynch JW. Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. Ann Epidemiol. 2006;16:91–104.CrossRefPubMed
20.
go back to reference US Preventive Services Task Force. Screening for lipid disorders in children: US Preventive Services Task Force recommendation statement. Pediatrics. 2007;120:e215–9. US Preventive Services Task Force. Screening for lipid disorders in children: US Preventive Services Task Force recommendation statement. Pediatrics. 2007;120:e215–9.
21.
go back to reference Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, et al. CDC growth charts: United States. Advance Data. 2000;1–27. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, et al. CDC growth charts: United States. Advance Data. 2000;1–27.
22.
go back to reference Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. CDC Growth Charts for the United States: methods and development. Vital and health statistics Series 11. Data from the National Health Survey. 2000;2002:1–190. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. CDC Growth Charts for the United States: methods and development. Vital and health statistics Series 11. Data from the National Health Survey. 2000;2002:1–190.
25.
go back to reference Krieger N. Overcoming the absence of socioeconomic data in medical records: validation and application of a census-based methodology. Am J Public Health. 1992;82:703–10.CrossRefPubMedPubMedCentral Krieger N. Overcoming the absence of socioeconomic data in medical records: validation and application of a census-based methodology. Am J Public Health. 1992;82:703–10.CrossRefPubMedPubMedCentral
26.
go back to reference Krieger N, Chen JT, Waterman PD, Rehkopf DH, Subramanian SV. Painting a truer picture of US socioeconomic and racial/ethnic health inequalities: the Public Health Disparities Geocoding Project. Am J Public Health. 2005;95:312–23.CrossRefPubMedPubMedCentral Krieger N, Chen JT, Waterman PD, Rehkopf DH, Subramanian SV. Painting a truer picture of US socioeconomic and racial/ethnic health inequalities: the Public Health Disparities Geocoding Project. Am J Public Health. 2005;95:312–23.CrossRefPubMedPubMedCentral
27.
go back to reference Diez-Roux AV, Kiefe CI, Jacobs Jr DR, Haan M, Jackson SA, Nieto FJ, et al. Area characteristics and individual-level socioeconomic position indicators in three population-based epidemiologic studies. Ann Epidemiol. 2001;11:395–405.CrossRefPubMed Diez-Roux AV, Kiefe CI, Jacobs Jr DR, Haan M, Jackson SA, Nieto FJ, et al. Area characteristics and individual-level socioeconomic position indicators in three population-based epidemiologic studies. Ann Epidemiol. 2001;11:395–405.CrossRefPubMed
28.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.CrossRefPubMed Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.CrossRefPubMed
29.
go back to reference Reppert A, Steiner BF, Chapman-Novakofski K. Prevalence of metabolic syndrome and associated risk factors in Illinois. American Journal of Health Promotion: AJHP. 2008;23:130–8.CrossRefPubMed Reppert A, Steiner BF, Chapman-Novakofski K. Prevalence of metabolic syndrome and associated risk factors in Illinois. American Journal of Health Promotion: AJHP. 2008;23:130–8.CrossRefPubMed
30.
go back to reference van den Berg G, van Eijsden M, Vrijkotte TG, Gemke RJ. Socioeconomic inequalities in lipid and glucose metabolism in early childhood in a population-based cohort: the ABCD-Study. BMC Public Health. 2012;12:591.CrossRefPubMedPubMedCentral van den Berg G, van Eijsden M, Vrijkotte TG, Gemke RJ. Socioeconomic inequalities in lipid and glucose metabolism in early childhood in a population-based cohort: the ABCD-Study. BMC Public Health. 2012;12:591.CrossRefPubMedPubMedCentral
31.
go back to reference Steiner MJ, Skinner AC, Perrin EM. Fasting might not be necessary before lipid screening: a nationally representative cross-sectional study. Pediatrics. 2011;128:463–70.PubMedPubMedCentral Steiner MJ, Skinner AC, Perrin EM. Fasting might not be necessary before lipid screening: a nationally representative cross-sectional study. Pediatrics. 2011;128:463–70.PubMedPubMedCentral
32.
go back to reference Expert Panel on Integrated Guidelines for Cardiovascular H, Risk Reduction in C, Adolescents, National Heart L, Blood I. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5): S213-56. Expert Panel on Integrated Guidelines for Cardiovascular H, Risk Reduction in C, Adolescents, National Heart L, Blood I. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5): S213-56.
Metadata
Title
Census tract based income level and lipid levels in urban pediatric primary care: a retrospective study
Authors
Enid E. Martinez
Peter W. Forbes
Sharon E. O’Brien
Sarah D. de Ferranti
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2016
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-016-0622-x

Other articles of this Issue 1/2016

BMC Pediatrics 1/2016 Go to the issue