Skip to main content
Top
Published in: BMC Pediatrics 1/2015

Open Access 01-12-2015 | Study protocol

Early high flow nasal cannula therapy in bronchiolitis, a prospective randomised control trial (protocol): A Paediatric Acute Respiratory Intervention Study (PARIS)

Authors: Donna Franklin, Stuart Dalziel, Luregn J. Schlapbach, Franz E. Babl, Ed Oakley, Simon S. Craig, Jeremy S. Furyk, Jocelyn Neutze, Kam Sinn, Jennifer A. Whitty, Kristen Gibbons, John Fraser, Andreas Schibler, on behalf of PARIS and PREDICT

Published in: BMC Pediatrics | Issue 1/2015

Login to get access

Abstract

Background

Bronchiolitis imposes the largest health care burden on non-elective paediatric hospital admissions worldwide, with up to 15 % of cases requiring admission to intensive care. A number of previous studies have failed to show benefit of pharmaceutical treatment in respect to length of stay, reduction in PICU admission rates or intubation frequency. The early use of non-invasive respiratory support devices in less intensive scenarios to facilitate earlier respiratory support may have an impact on outcome by avoiding progression of the disease process. High Flow Nasal Cannula (HFNC) therapy has emerged as a new method to provide humidified air flow to deliver a non-invasive form of positive pressure support with titratable oxygen fraction. There is a lack of high-grade evidence on use of HFNC therapy in bronchiolitis.

Methods/Design

Prospective multi-centre randomised trial comparing standard treatment (standard subnasal oxygen) and High Flow Nasal Cannula therapy in infants with bronchiolitis admitted to 17 hospitals emergency departments and wards in Australia and New Zealand, including 12 non-tertiary regional/metropolitan and 5 tertiary centres. The primary outcome is treatment failure; defined as meeting three out of four pre-specified failure criteria requiring escalation of treatment or higher level of care; i) heart rate remains unchanged or increased compared to admission/enrolment observations, ii) respiratory rate remains unchanged or increased compared to admission/enrolment observations, iii) oxygen requirement in HFNC therapy arm exceeds FiO2 ≥ 40 % to maintain SpO2 ≥ 92 % (or ≥94 %) or oxygen requirement in standard subnasal oxygen therapy arm exceeds >2L/min to maintain SpO2 ≥ 92 % (or ≥94 %), and iv) hospital internal Early Warning Tool calls for medical review and escalation of care. Secondary outcomes include transfer to tertiary institution, admission to intensive care, length of stay, length of oxygen treatment, need for non-invasive/invasive ventilation, intubation, adverse events, and cost.

Discussion

This large multicenter randomised trial will allow the definitive assessment of the efficacy of HFNC therapy as compared to standard subnasal oxygen in the treatment of bronchiolitis.

Trial registration

The trial is registered with the Australian and New Zealand Clinical Trials Registry ACTRN12613000388​718 (registered on 10 April 2013).
Literature
1.
go back to reference Essouri S, Laurent M, Chevret L, Durand P, Ecochard E, Gajdos V, et al. Improved clinical and economic outcomes in severe bronchiolitis with pre-emptive nCPAP ventilatory strategy. Intensive Care Med. 2014;40(1):84–91.CrossRefPubMed Essouri S, Laurent M, Chevret L, Durand P, Ecochard E, Gajdos V, et al. Improved clinical and economic outcomes in severe bronchiolitis with pre-emptive nCPAP ventilatory strategy. Intensive Care Med. 2014;40(1):84–91.CrossRefPubMed
2.
go back to reference Hasegawa K, Tsugawa Y, Brown DF, Mansbach JM, Camargo Jr CA. Trends in bronchiolitis hospitalizations in the United States, 2000-2009. Pediatrics. 2013;132(1):28–36.PubMedCentralCrossRefPubMed Hasegawa K, Tsugawa Y, Brown DF, Mansbach JM, Camargo Jr CA. Trends in bronchiolitis hospitalizations in the United States, 2000-2009. Pediatrics. 2013;132(1):28–36.PubMedCentralCrossRefPubMed
3.
go back to reference Zorc JJ, Hall CB. Bronchiolitis: recent evidence on diagnosis and management. Pediatrics. 2010;125(2):342–9.CrossRefPubMed Zorc JJ, Hall CB. Bronchiolitis: recent evidence on diagnosis and management. Pediatrics. 2010;125(2):342–9.CrossRefPubMed
4.
go back to reference Oakley E, Borland M, Neutze J, Acworth J, Krieser D, Dalziel S, et al. Nasogastric hydration versus intravenous hydration for infants with bronchiolitis: a randomised trial. Lancet Respir Med. 2013;1(2):113–20.CrossRefPubMed Oakley E, Borland M, Neutze J, Acworth J, Krieser D, Dalziel S, et al. Nasogastric hydration versus intravenous hydration for infants with bronchiolitis: a randomised trial. Lancet Respir Med. 2013;1(2):113–20.CrossRefPubMed
5.
go back to reference Essouri S, Chevret L, Durand P, Haas V, Fauroux B, Devictor D. Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med. 2006;7(4):329–34.CrossRefPubMed Essouri S, Chevret L, Durand P, Haas V, Fauroux B, Devictor D. Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med. 2006;7(4):329–34.CrossRefPubMed
6.
go back to reference Javouhey E, Barats A, Richard N, Stamm D, Floret D. Non-invasive ventilation as primary ventilatory support for infants with severe bronchiolitis. Intensive Care Med. 2008;34(9):1608–14.CrossRefPubMed Javouhey E, Barats A, Richard N, Stamm D, Floret D. Non-invasive ventilation as primary ventilatory support for infants with severe bronchiolitis. Intensive Care Med. 2008;34(9):1608–14.CrossRefPubMed
7.
go back to reference Lazner MR, Basu AP, Klonin H. Non-invasive ventilation for severe bronchiolitis: analysis and evidence. Pediatr Pulmonol. 2012;47(9):909–16.CrossRefPubMed Lazner MR, Basu AP, Klonin H. Non-invasive ventilation for severe bronchiolitis: analysis and evidence. Pediatr Pulmonol. 2012;47(9):909–16.CrossRefPubMed
8.
go back to reference Bellinger DC, Wypij D, du Plessis AJ, Rappaport LA, Jonas RA, Wernovsky G, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003;126(5):1385–96.CrossRefPubMed Bellinger DC, Wypij D, du Plessis AJ, Rappaport LA, Jonas RA, Wernovsky G, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003;126(5):1385–96.CrossRefPubMed
9.
go back to reference Lee JH, Rehder KJ, Williford L, Cheifetz IM, Turner DA. Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med. 2013;39(2):247–57.CrossRefPubMed Lee JH, Rehder KJ, Williford L, Cheifetz IM, Turner DA. Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med. 2013;39(2):247–57.CrossRefPubMed
10.
go back to reference Pham TM, O'Malley L, Mayfield S, Martin S, Schibler A. The effect of high flow nasal cannula therapy on the work of breathing in infants with bronchiolitis. Pediatr Pulmonol. 2014;50(7):713–20.CrossRefPubMed Pham TM, O'Malley L, Mayfield S, Martin S, Schibler A. The effect of high flow nasal cannula therapy on the work of breathing in infants with bronchiolitis. Pediatr Pulmonol. 2014;50(7):713–20.CrossRefPubMed
11.
go back to reference Hough JL, Pham T, Schibler A. Physiological effect of high flow nasal cannula in infants with bronchiolitis. Pediatr Crit Care Med. 2014;15(5):214–9.CrossRef Hough JL, Pham T, Schibler A. Physiological effect of high flow nasal cannula in infants with bronchiolitis. Pediatr Crit Care Med. 2014;15(5):214–9.CrossRef
12.
go back to reference Mayfield S, Bogossian F, O'Malley L, Schibler A. High-flow nasal cannula oxygen therapy for infants with bronchiolitis: Pilot study. J Paediatr Child Health. 2014;50(5):373–8.CrossRefPubMed Mayfield S, Bogossian F, O'Malley L, Schibler A. High-flow nasal cannula oxygen therapy for infants with bronchiolitis: Pilot study. J Paediatr Child Health. 2014;50(5):373–8.CrossRefPubMed
13.
go back to reference Bressan S, Balzani M, Krauss B, Pettenazzo A, Zanconato S, Baraldi E. High-flow nasal cannula oxygen for bronchiolitis in a pediatric ward: a pilot study. Eur J Pediatr. 2013;172(12):1649–56.CrossRefPubMed Bressan S, Balzani M, Krauss B, Pettenazzo A, Zanconato S, Baraldi E. High-flow nasal cannula oxygen for bronchiolitis in a pediatric ward: a pilot study. Eur J Pediatr. 2013;172(12):1649–56.CrossRefPubMed
14.
go back to reference Keenan SP, Sinuff T, Cook DJ, Hill NS. Does noninvasive positive pressure ventilation improve outcome in acute hypoxemic respiratory failure? A systematic review. Crit Care Med. 2004;32(12):2516–23.CrossRefPubMed Keenan SP, Sinuff T, Cook DJ, Hill NS. Does noninvasive positive pressure ventilation improve outcome in acute hypoxemic respiratory failure? A systematic review. Crit Care Med. 2004;32(12):2516–23.CrossRefPubMed
15.
go back to reference Schibler A, Pham TM, Dunster KR, Foster K, Barlow A, Gibbons K, et al. Reduced intubation rates for infants after introduction of high-flow nasal prong oxygen delivery. Intensive Care Med. 2011;37(5):847–52.CrossRefPubMed Schibler A, Pham TM, Dunster KR, Foster K, Barlow A, Gibbons K, et al. Reduced intubation rates for infants after introduction of high-flow nasal prong oxygen delivery. Intensive Care Med. 2011;37(5):847–52.CrossRefPubMed
16.
go back to reference ten Brink F, Duke T, Evans J. High-flow nasal prong oxygen therapy or nasopharyngeal continuous positive airway pressure for children with moderate-tosevere respiratory distress?*. Pediatr Critical Care Med. 2013;14(7):e326–331.CrossRef ten Brink F, Duke T, Evans J. High-flow nasal prong oxygen therapy or nasopharyngeal continuous positive airway pressure for children with moderate-tosevere respiratory distress?*. Pediatr Critical Care Med. 2013;14(7):e326–331.CrossRef
17.
go back to reference Kelly GS, Simon HK, Sturm JJ. High-flow nasal cannula use in children with respiratory distress in the emergency department: predicting the need for subsequent intubation. Pediatr Emerg Care. 2013;29(8):888–92.CrossRefPubMed Kelly GS, Simon HK, Sturm JJ. High-flow nasal cannula use in children with respiratory distress in the emergency department: predicting the need for subsequent intubation. Pediatr Emerg Care. 2013;29(8):888–92.CrossRefPubMed
18.
go back to reference Ralston SL, Lieberthal AS, Meissner HC, Alverson BK, Baley JE, Gadomski AM, et al. Clinical practice guideline: the diagnosis, management, and prevention of bronchiolitis. Pediatrics. 2014;134(5):e1474–1502.CrossRefPubMed Ralston SL, Lieberthal AS, Meissner HC, Alverson BK, Baley JE, Gadomski AM, et al. Clinical practice guideline: the diagnosis, management, and prevention of bronchiolitis. Pediatrics. 2014;134(5):e1474–1502.CrossRefPubMed
19.
go back to reference World-Health-Organization, editor. Recommendations for management of common childhood conditions: evidence for technical update of pocket book recommendations: newborn conditions, dysentery, pneumonia, oxygen use and delivery, common causes of fever, severe acute malnutrition and supportive care. Geneva: World Health Organization; 2012. World-Health-Organization, editor. Recommendations for management of common childhood conditions: evidence for technical update of pocket book recommendations: newborn conditions, dysentery, pneumonia, oxygen use and delivery, common causes of fever, severe acute malnutrition and supportive care. Geneva: World Health Organization; 2012.
20.
go back to reference Mok JY, McLaughlin FJ, Pintar M, Hak H, Amaro-Galvez R, Levison H. Transcutaneous monitoring of oxygenation: what is normal? J Pediatr. 1986;108(3):365–71.CrossRefPubMed Mok JY, McLaughlin FJ, Pintar M, Hak H, Amaro-Galvez R, Levison H. Transcutaneous monitoring of oxygenation: what is normal? J Pediatr. 1986;108(3):365–71.CrossRefPubMed
21.
go back to reference Subhi R, Smith K, Duke T. When should oxygen be given to children at high altitude? A systematic review to define altitude-specific hypoxaemia. Arch Dis Child. 2009;94(1):6–10.CrossRefPubMed Subhi R, Smith K, Duke T. When should oxygen be given to children at high altitude? A systematic review to define altitude-specific hypoxaemia. Arch Dis Child. 2009;94(1):6–10.CrossRefPubMed
22.
go back to reference Manley BJ, Owen LS, Doyle LW, Andersen CC, Cartwright DW, Pritchard MA, et al. High-flow nasal cannulae in very preterm infants after extubation. N Engl J Med. 2013;369(15):1425–33.CrossRefPubMed Manley BJ, Owen LS, Doyle LW, Andersen CC, Cartwright DW, Pritchard MA, et al. High-flow nasal cannulae in very preterm infants after extubation. N Engl J Med. 2013;369(15):1425–33.CrossRefPubMed
23.
go back to reference Milesi C, Baleine J, Matecki S, Durand S, Combes C, Novais AR, et al. Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intens Care Med. 2013;39(6):1088–94.CrossRef Milesi C, Baleine J, Matecki S, Durand S, Combes C, Novais AR, et al. Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intens Care Med. 2013;39(6):1088–94.CrossRef
25.
go back to reference Efron BT, Tibshirani RJ. An Introduction to the Bootstrap. New York: Chapman & Hall; 1993.CrossRef Efron BT, Tibshirani RJ. An Introduction to the Bootstrap. New York: Chapman & Hall; 1993.CrossRef
Metadata
Title
Early high flow nasal cannula therapy in bronchiolitis, a prospective randomised control trial (protocol): A Paediatric Acute Respiratory Intervention Study (PARIS)
Authors
Donna Franklin
Stuart Dalziel
Luregn J. Schlapbach
Franz E. Babl
Ed Oakley
Simon S. Craig
Jeremy S. Furyk
Jocelyn Neutze
Kam Sinn
Jennifer A. Whitty
Kristen Gibbons
John Fraser
Andreas Schibler
on behalf of PARIS and PREDICT
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2015
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-015-0501-x

Other articles of this Issue 1/2015

BMC Pediatrics 1/2015 Go to the issue