Skip to main content
Top
Published in: BMC Ophthalmology 1/2023

Open Access 01-12-2023 | Night-Blindness | Case Report

Asymmetric presentation with a novel RP2 gene mutation in X-Linked retinitis pigmentosa: a case report

Authors: Hyun Woo Lee, Eun Kyoung Lee

Published in: BMC Ophthalmology | Issue 1/2023

Login to get access

Abstract

Background

We present the detailed multimodal imaging analysis in a case of X-linked retinitis pigmentosa (XLRP) exhibiting a markedly asymmetric presentation with a novel RP2 mutation.

Case presentation

A 25-year-old woman complained of decreased vision in the right eye as well as night blindness. Her visual acuity was 20/100 (OD) and 20/20 (OS). Fundus examination revealed bone spicule pigmentation with tessellated changes in the fundus within the posterior pole. Optical coherence tomography (OCT) showed generalized disruption of foveal microstructures in the OD. No abnormal findings were identified, but localized ellipsoid zone band losses were observed on OCT in the OS. Fundus autofluorescence revealed multiple patchy hypo-autofluorescent lesions in the OD and a tapetal-like radial reflex against a dark background in the OS. Fluorescein angiography and OCT angiography revealed diffuse mottled hyperfluorescence with reduced retinal vessel density in the OD and no evidence of vascular compromise in the OS. Goldmann perimetry demonstrated a constricted visual field, and electrophysiological assessment revealed an extinguished rod response and a severely impaired cone response in the OD. Molecular genetic tests via next-generation sequencing revealed the pathogenic variant to be a heterozygous frameshift mutation in RP2 (RP2, p.Glu269Glyfs*7), resulting in premature termination of the protein.

Conclusions

Random X-inactivation may be attributed to interocular differences in the severity of XLRP in female carriers. A novel frameshift mutation in the RP2 gene and a comprehensive phenotypic evaluation in the current study may broaden the spectrum of the disease in XLRP carriers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang Q. Retinitis Pigmentosa: Progress and Perspective. Asia Pac J Ophthalmol (Phila). 2016;5:265–71.CrossRefPubMed Zhang Q. Retinitis Pigmentosa: Progress and Perspective. Asia Pac J Ophthalmol (Phila). 2016;5:265–71.CrossRefPubMed
5.
go back to reference Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genet. 2013;84:132–41.CrossRefPubMed Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genet. 2013;84:132–41.CrossRefPubMed
6.
go back to reference Webb TR, Parfitt DA, Gardner JC, et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum Mol Genet. 2012;21:3647–54.CrossRefPubMedPubMedCentral Webb TR, Parfitt DA, Gardner JC, et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum Mol Genet. 2012;21:3647–54.CrossRefPubMedPubMedCentral
7.
go back to reference Shu X, Black GC, Rice JM, et al. RPGR mutation analysis and disease: an update. Hum Mutat. 2007;28:322–8.CrossRefPubMed Shu X, Black GC, Rice JM, et al. RPGR mutation analysis and disease: an update. Hum Mutat. 2007;28:322–8.CrossRefPubMed
8.
go back to reference Pelletier V, Jambou M, Delphin N, et al. Comprehensive survey of mutations in RP2 and RPGR in patients affected with distinct retinal dystrophies: genotype-phenotype correlations and impact on genetic counseling. Hum Mutat. 2007;28:81–91.CrossRefPubMed Pelletier V, Jambou M, Delphin N, et al. Comprehensive survey of mutations in RP2 and RPGR in patients affected with distinct retinal dystrophies: genotype-phenotype correlations and impact on genetic counseling. Hum Mutat. 2007;28:81–91.CrossRefPubMed
9.
go back to reference Breuer DK, Yashar BM, Filippova E, et al. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet. 2002;70:1545–54.CrossRefPubMedPubMedCentral Breuer DK, Yashar BM, Filippova E, et al. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet. 2002;70:1545–54.CrossRefPubMedPubMedCentral
10.
11.
go back to reference Wu AL, Wang JP, Tseng YJ, et al. Multimodal Imaging of Mosaic Retinopathy in Carriers of Hereditary X-Linked Recessive Diseases. Retina. 2018;38:1047–57.CrossRefPubMed Wu AL, Wang JP, Tseng YJ, et al. Multimodal Imaging of Mosaic Retinopathy in Carriers of Hereditary X-Linked Recessive Diseases. Retina. 2018;38:1047–57.CrossRefPubMed
12.
go back to reference Wu H, Luo J, Yu H, et al. Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron. 2014;81:103–19.CrossRefPubMedPubMedCentral Wu H, Luo J, Yu H, et al. Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron. 2014;81:103–19.CrossRefPubMedPubMedCentral
13.
go back to reference Evans RJ, Hardcastle AJ, Cheetham ME. Focus on molecules: X-linked Retinitis Pigmentosa 2 protein, RP2. Exp Eye Res. 2006;82:543–4.CrossRefPubMed Evans RJ, Hardcastle AJ, Cheetham ME. Focus on molecules: X-linked Retinitis Pigmentosa 2 protein, RP2. Exp Eye Res. 2006;82:543–4.CrossRefPubMed
14.
go back to reference Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral
15.
go back to reference Jacobson SG, Yagasaki K, Feuer WJ, et al. Interocular asymmetry of visual function in heterozygotes of X-linked retinitis pigmentosa. Exp Eye Res. 1989;48:679–91.CrossRefPubMed Jacobson SG, Yagasaki K, Feuer WJ, et al. Interocular asymmetry of visual function in heterozygotes of X-linked retinitis pigmentosa. Exp Eye Res. 1989;48:679–91.CrossRefPubMed
16.
go back to reference Comander J, Weigel-DiFranco C, Sandberg MA, et al. Visual Function in Carriers of X-Linked Retinitis Pigmentosa. Ophthalmology. 2015;122:1899–906.CrossRefPubMed Comander J, Weigel-DiFranco C, Sandberg MA, et al. Visual Function in Carriers of X-Linked Retinitis Pigmentosa. Ophthalmology. 2015;122:1899–906.CrossRefPubMed
17.
go back to reference Sharon D, Sandberg MA, Rabe VW, et al. RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa. Am J Hum Genet. 2003;73:1131–46.CrossRefPubMedPubMedCentral Sharon D, Sandberg MA, Rabe VW, et al. RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa. Am J Hum Genet. 2003;73:1131–46.CrossRefPubMedPubMedCentral
18.
go back to reference Jayasundera T, Branham KE, Othman M, et al. RP2 phenotype and pathogenetic correlations in X-linked retinitis pigmentosa. Arch Ophthalmol. 2010;128:915–23.CrossRefPubMedPubMedCentral Jayasundera T, Branham KE, Othman M, et al. RP2 phenotype and pathogenetic correlations in X-linked retinitis pigmentosa. Arch Ophthalmol. 2010;128:915–23.CrossRefPubMedPubMedCentral
19.
go back to reference Genead MA, Fishman GA, Lindeman M. Structural and functional characteristics in carriers of X-linked retinitis pigmentosa with a tapetal-like reflex. Retina. 2010;30:1726–33.CrossRefPubMedPubMedCentral Genead MA, Fishman GA, Lindeman M. Structural and functional characteristics in carriers of X-linked retinitis pigmentosa with a tapetal-like reflex. Retina. 2010;30:1726–33.CrossRefPubMedPubMedCentral
20.
go back to reference Acton JH, Greenberg JP, Greenstein VC, et al. Evaluation of multimodal imaging in carriers of X-linked retinitis pigmentosa. Exp Eye Res. 2013;113:41–8.CrossRefPubMedPubMedCentral Acton JH, Greenberg JP, Greenstein VC, et al. Evaluation of multimodal imaging in carriers of X-linked retinitis pigmentosa. Exp Eye Res. 2013;113:41–8.CrossRefPubMedPubMedCentral
21.
go back to reference Ma K. Embryonic left-right separation mechanism allows confinement of mutation-induced phenotypes to one lateral body half of bilaterians. Am J Med Genet A. 2013;161A:3095–114.CrossRefPubMed Ma K. Embryonic left-right separation mechanism allows confinement of mutation-induced phenotypes to one lateral body half of bilaterians. Am J Med Genet A. 2013;161A:3095–114.CrossRefPubMed
22.
go back to reference Fujinami K, Liu X, Ueno S, et al. RP2-associated retinal disorder in a Japanese cohort: Report of novel variants and a literature review, identifying a genotype-phenotype association. Am J Med Genet C Semin Med Genet. 2020;184:675–93.CrossRefPubMed Fujinami K, Liu X, Ueno S, et al. RP2-associated retinal disorder in a Japanese cohort: Report of novel variants and a literature review, identifying a genotype-phenotype association. Am J Med Genet C Semin Med Genet. 2020;184:675–93.CrossRefPubMed
23.
go back to reference Miano MG, Testa F, Filippini F, et al. Identification of novel RP2 mutations in a subset of X-linked retinitis pigmentosa families and prediction of new domains. Hum Mutat. 2001;18:109–19.CrossRefPubMed Miano MG, Testa F, Filippini F, et al. Identification of novel RP2 mutations in a subset of X-linked retinitis pigmentosa families and prediction of new domains. Hum Mutat. 2001;18:109–19.CrossRefPubMed
24.
go back to reference De Silva SR, Arno G, Robson AG, et al. The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog Retin Eye Res. 2021;82: 100898.CrossRefPubMed De Silva SR, Arno G, Robson AG, et al. The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog Retin Eye Res. 2021;82: 100898.CrossRefPubMed
25.
26.
go back to reference Schwahn U, Lenzner S, Dong J, et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet. 1998;19:327–32.CrossRefPubMed Schwahn U, Lenzner S, Dong J, et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet. 1998;19:327–32.CrossRefPubMed
27.
go back to reference Mears AJ, Gieser L, Yan D, et al. Protein-truncation mutations in the RP2 gene in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet. 1999;64:897–900.CrossRefPubMedPubMedCentral Mears AJ, Gieser L, Yan D, et al. Protein-truncation mutations in the RP2 gene in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet. 1999;64:897–900.CrossRefPubMedPubMedCentral
28.
go back to reference Hardcastle AJ, Thiselton DL, Van Maldergem L, et al. Mutations in the RP2 gene cause disease in 10% of families with familial X-linked retinitis pigmentosa assessed in this study. Am J Hum Genet. 1999;64:1210–5.CrossRefPubMedPubMedCentral Hardcastle AJ, Thiselton DL, Van Maldergem L, et al. Mutations in the RP2 gene cause disease in 10% of families with familial X-linked retinitis pigmentosa assessed in this study. Am J Hum Genet. 1999;64:1210–5.CrossRefPubMedPubMedCentral
29.
go back to reference Rosenberg T, Schwahn U, Feil S, et al. Genotype-phenotype correlation in X-linked retinitis pigmentosa 2 (RP2). Ophthalmic Genet. 1999;20:161–72.CrossRefPubMed Rosenberg T, Schwahn U, Feil S, et al. Genotype-phenotype correlation in X-linked retinitis pigmentosa 2 (RP2). Ophthalmic Genet. 1999;20:161–72.CrossRefPubMed
30.
go back to reference Thiselton DL, Zito I, Plant C, et al. Novel frameshift mutations in the RP2 gene and polymorphic variants. Hum Mutat. 2000;15:580.CrossRefPubMed Thiselton DL, Zito I, Plant C, et al. Novel frameshift mutations in the RP2 gene and polymorphic variants. Hum Mutat. 2000;15:580.CrossRefPubMed
31.
go back to reference Wada Y, Nakazawa M, Abe T, et al. A new Leu253Arg mutation in the RP2 gene in a Japanese family with X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2000;41:290–3.PubMed Wada Y, Nakazawa M, Abe T, et al. A new Leu253Arg mutation in the RP2 gene in a Japanese family with X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2000;41:290–3.PubMed
32.
go back to reference Schwahn U, Paland N, Techritz S, et al. Mutations in the X-linked RP2 gene cause intracellular misrouting and loss of the protein. Hum Mol Genet. 2001;10:1177–83.CrossRefPubMed Schwahn U, Paland N, Techritz S, et al. Mutations in the X-linked RP2 gene cause intracellular misrouting and loss of the protein. Hum Mol Genet. 2001;10:1177–83.CrossRefPubMed
33.
go back to reference Thomas PJ, Qu BH, Pedersen PL. Defective protein folding as a basis of human disease. Trends Biochem Sci. 1995;20:456–9.CrossRefPubMed Thomas PJ, Qu BH, Pedersen PL. Defective protein folding as a basis of human disease. Trends Biochem Sci. 1995;20:456–9.CrossRefPubMed
34.
go back to reference Horner F, Wawrzynski J, MacLaren RE. Novel non-sense mutation in RP2 (c.843_844insT/p.Arg282fs) is associated with a severe phenotype of retinitis pigmentosa without evidence of primary retinal pigment epithelium involvement. BMJ Case Rep. 2019;12. Horner F, Wawrzynski J, MacLaren RE. Novel non-sense mutation in RP2 (c.843_844insT/p.Arg282fs) is associated with a severe phenotype of retinitis pigmentosa without evidence of primary retinal pigment epithelium involvement. BMJ Case Rep. 2019;12.
Metadata
Title
Asymmetric presentation with a novel RP2 gene mutation in X-Linked retinitis pigmentosa: a case report
Authors
Hyun Woo Lee
Eun Kyoung Lee
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2023
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-023-02968-4

Other articles of this Issue 1/2023

BMC Ophthalmology 1/2023 Go to the issue