Skip to main content
Top
Published in: BMC Ophthalmology 1/2020

01-12-2020 | Refractive Errors | Research article

Age distribution and associated factors of cornea biomechanical parameter stress-strain index in Chinese healthy population

Authors: Guihua Liu, Hua Rong, Ruxia Pei, Bei Du, Nan Jin, Di Wang, Chengcheng Jin, Ruihua Wei

Published in: BMC Ophthalmology | Issue 1/2020

Login to get access

Abstract

Background

To investigate the new cornea biomechanical parameter stress-strain index (SSI) in Chinese healthy people and the factors associated with SSI.

Methods

A total of 175 eyes from 175 participants were included in this study. Axial length was measured with the Lenstar LS-900. Pentacam measured curvature of the cornea and anterior chamber volume (ACV). Cornea biomechanical properties assessments were performed by corneal visualization Scheimpflug technology (Corvis ST). Student’s t-test, one-way ANOVA, partial least square linear regression (PLSLR) and linear mixed effects (LME) model were used in the statistical analysis.

Results

The mean (±SD) SSI was 1.14 ± 0.22 (range, 0.66–1.78) in all subjects and affected by age significantly after age of 35 (P < 0.05). In LME models, SSI was significantly associated with age (β = 0.526, P < 0.001), axial length (AL) (β = − 0.541, P < 0.001), intraocular pressure (IOP) (β = 0.326, P < 0.001) and steepest radius of anterior corneal curvature (RsF) (β = 0.229, P < 0.001) but not with ACV, biomechanical corrected intraocular pressure (bIOP), flattest radius of anterior corneal curvature (RfF) or central corneal thickness (CCT) (P > 0.05 for each).

Conclusions

SSI increased with age after the age of 35. In addition to age, SSI was positively correlated with RsF and IOP, while negatively correlated with AL.
Literature
1.
go back to reference Salomão M, Hoffling-Lima AL, Lopes B, Belin MW, Sena N, Dawson DG, et al. Recent developments in keratoconus diagnosis. Exp Rev Ophthalmol. 2018;13(6):329–41.CrossRef Salomão M, Hoffling-Lima AL, Lopes B, Belin MW, Sena N, Dawson DG, et al. Recent developments in keratoconus diagnosis. Exp Rev Ophthalmol. 2018;13(6):329–41.CrossRef
2.
go back to reference Zhang M, Zhang F, Li Y, Song Y, Wang Z. Early diagnosis of Keratoconus in Chinese myopic eyes by combining Corvis ST with Pentacam. Curr Eye Res. 2020;45(2):118–23.CrossRefPubMed Zhang M, Zhang F, Li Y, Song Y, Wang Z. Early diagnosis of Keratoconus in Chinese myopic eyes by combining Corvis ST with Pentacam. Curr Eye Res. 2020;45(2):118–23.CrossRefPubMed
3.
go back to reference Ortiz D, Pinero D, Shabayek MH, Arnalich-Montiel F, Alio JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007;33(8):1371–5.CrossRefPubMed Ortiz D, Pinero D, Shabayek MH, Arnalich-Montiel F, Alio JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007;33(8):1371–5.CrossRefPubMed
4.
go back to reference Miki A, Yasukura Y, Weinreb RN, Yamada T, Koh S, Asai T, et al. Dynamic Scheimpflug ocular biomechanical parameters in healthy and medically controlled Glaucoma eyes. J Glaucoma. 2019;28(7):588–92.CrossRefPubMed Miki A, Yasukura Y, Weinreb RN, Yamada T, Koh S, Asai T, et al. Dynamic Scheimpflug ocular biomechanical parameters in healthy and medically controlled Glaucoma eyes. J Glaucoma. 2019;28(7):588–92.CrossRefPubMed
5.
go back to reference Vinciguerra R, Rehman S, Vallabh NA, Batterbury M, Czanner G, Choudhary A, et al. Corneal biomechanics and biomechanically corrected intraocular pressure in primary open-angle glaucoma, ocular hypertension and controls. Br J Ophthalmol. 2020;104(1):121–6.CrossRefPubMed Vinciguerra R, Rehman S, Vallabh NA, Batterbury M, Czanner G, Choudhary A, et al. Corneal biomechanics and biomechanically corrected intraocular pressure in primary open-angle glaucoma, ocular hypertension and controls. Br J Ophthalmol. 2020;104(1):121–6.CrossRefPubMed
6.
go back to reference Ethier CR, Johnson M, Ruberti J. Ocular biomechanics and biotransport. Annu Rev Biomed Eng. 2004;6:249–73.CrossRefPubMed Ethier CR, Johnson M, Ruberti J. Ocular biomechanics and biotransport. Annu Rev Biomed Eng. 2004;6:249–73.CrossRefPubMed
7.
go back to reference Elsheikh A, Wang D, Brown M, Rama P, Campanelli M, Pye D. Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res. 2007;32(1):11–9.CrossRefPubMed Elsheikh A, Wang D, Brown M, Rama P, Campanelli M, Pye D. Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res. 2007;32(1):11–9.CrossRefPubMed
9.
go back to reference Salmi A, Nieminen HJ, Veira Canle D, Haeggstrom E, Kontiola A. Non-contact determination of intra-ocular pressure in an ex vivo porcine model. PLoS One. 2020;15(2):e0227488.CrossRefPubMedPubMedCentral Salmi A, Nieminen HJ, Veira Canle D, Haeggstrom E, Kontiola A. Non-contact determination of intra-ocular pressure in an ex vivo porcine model. PLoS One. 2020;15(2):e0227488.CrossRefPubMedPubMedCentral
10.
go back to reference Eliasy A, Chen KJ, Vinciguerra R, Lopes BT, Abass A, Vinciguerra P, et al. Determination of corneal biomechanical behavior in-vivo for healthy eyes using CorVis ST tonometry: stress-strain index. Front Bioeng Biotechnol. 2019;7:105.CrossRefPubMedPubMedCentral Eliasy A, Chen KJ, Vinciguerra R, Lopes BT, Abass A, Vinciguerra P, et al. Determination of corneal biomechanical behavior in-vivo for healthy eyes using CorVis ST tonometry: stress-strain index. Front Bioeng Biotechnol. 2019;7:105.CrossRefPubMedPubMedCentral
11.
go back to reference Ruberti JW, Sinha Roy A, Roberts CJ. Corneal biomechanics and biomaterials. Annu Rev Biomed Eng. 2011;13:269–95.CrossRefPubMed Ruberti JW, Sinha Roy A, Roberts CJ. Corneal biomechanics and biomaterials. Annu Rev Biomed Eng. 2011;13:269–95.CrossRefPubMed
12.
go back to reference Clayson K, Pan X, Pavlatos E, Short R, Morris H, Hart RT, et al. Corneoscleral stiffening increases IOP spike magnitudes during rapid microvolumetric change in the eye. Exp Eye Res. 2017;165:29–34.CrossRefPubMedPubMedCentral Clayson K, Pan X, Pavlatos E, Short R, Morris H, Hart RT, et al. Corneoscleral stiffening increases IOP spike magnitudes during rapid microvolumetric change in the eye. Exp Eye Res. 2017;165:29–34.CrossRefPubMedPubMedCentral
13.
go back to reference Chua J, Nongpiur ME, Zhao W, Tham YC, Gupta P, Sabanayagam C, et al. Comparison of corneal biomechanical properties between Indian and Chinese adults. Ophthalmology. 2017;124(9):1271–9.CrossRefPubMed Chua J, Nongpiur ME, Zhao W, Tham YC, Gupta P, Sabanayagam C, et al. Comparison of corneal biomechanical properties between Indian and Chinese adults. Ophthalmology. 2017;124(9):1271–9.CrossRefPubMed
14.
go back to reference Kotecha A, Elsheikh A, Roberts CR, Zhu H, Garway-Heath DF. Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest Ophthalmol Vis Sci. 2006;47(12):5337–47.CrossRefPubMed Kotecha A, Elsheikh A, Roberts CR, Zhu H, Garway-Heath DF. Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest Ophthalmol Vis Sci. 2006;47(12):5337–47.CrossRefPubMed
15.
go back to reference Cui X, Yang Y, Li Y, Huang F, Zhao Y, Chen H, et al. Correlation between anterior chamber volume and corneal biomechanical properties in human eyes. Front Bioeng Biotechnol. 2019;7:379.CrossRefPubMedPubMedCentral Cui X, Yang Y, Li Y, Huang F, Zhao Y, Chen H, et al. Correlation between anterior chamber volume and corneal biomechanical properties in human eyes. Front Bioeng Biotechnol. 2019;7:379.CrossRefPubMedPubMedCentral
16.
go back to reference Tubtimthong A, Chansangpetch S, Ratprasatporn N, Manassakorn A, Tantisevi V, Rojanapongpun P, et al. Comparison of corneal biomechanical properties among axial myopic, nonaxial myopic, and nonmyopic eyes. Biomed Res Int. 2020;2020:8618615.CrossRefPubMedPubMedCentral Tubtimthong A, Chansangpetch S, Ratprasatporn N, Manassakorn A, Tantisevi V, Rojanapongpun P, et al. Comparison of corneal biomechanical properties among axial myopic, nonaxial myopic, and nonmyopic eyes. Biomed Res Int. 2020;2020:8618615.CrossRefPubMedPubMedCentral
17.
go back to reference Vinciguerra R, Ambrosio R Jr, Roberts CJ, Azzolini C, Vinciguerra P. Biomechanical characterization of subclinical Keratoconus without topographic or tomographic abnormalities. J Refract Surg. 2017;33(6):399–407.CrossRefPubMed Vinciguerra R, Ambrosio R Jr, Roberts CJ, Azzolini C, Vinciguerra P. Biomechanical characterization of subclinical Keratoconus without topographic or tomographic abnormalities. J Refract Surg. 2017;33(6):399–407.CrossRefPubMed
18.
go back to reference Nemeth G, Szalai E, Hassan Z, Lipecz A, Flasko Z, Modis L. Corneal biomechanical data and biometric parameters measured with Scheimpflug-based devices on normal corneas. Int J Ophthalmol. 2017;10(2):217–22.PubMedPubMedCentral Nemeth G, Szalai E, Hassan Z, Lipecz A, Flasko Z, Modis L. Corneal biomechanical data and biometric parameters measured with Scheimpflug-based devices on normal corneas. Int J Ophthalmol. 2017;10(2):217–22.PubMedPubMedCentral
19.
go back to reference Lim L, Gazzard G, Chan YH, Fong A, Kotecha A, Sim EL, et al. Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children. Invest Ophthalmol Vis Sci. 2008;49(9):3852–7.CrossRefPubMed Lim L, Gazzard G, Chan YH, Fong A, Kotecha A, Sim EL, et al. Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children. Invest Ophthalmol Vis Sci. 2008;49(9):3852–7.CrossRefPubMed
20.
go back to reference Wang W, He M, He H, Zhang C, Jin H, Zhong X. Corneal biomechanical metrics of healthy Chinese adults using Corvis ST. Cont Lens Anterior Eye. 2017;40(2):97–103.CrossRefPubMed Wang W, He M, He H, Zhang C, Jin H, Zhong X. Corneal biomechanical metrics of healthy Chinese adults using Corvis ST. Cont Lens Anterior Eye. 2017;40(2):97–103.CrossRefPubMed
21.
go back to reference Daxer A, Misof K, Grabner B, Ettl A, Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci. 1998;39(3):644–8.PubMed Daxer A, Misof K, Grabner B, Ettl A, Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci. 1998;39(3):644–8.PubMed
22.
go back to reference Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM. Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta. 1992;1138(3):222–8.CrossRefPubMed Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM. Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta. 1992;1138(3):222–8.CrossRefPubMed
23.
go back to reference Blackburn BJ, Jenkins MW, Rollins AM, Dupps WJ. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking. Front Bioeng Biotechnol. 2019;7:66.CrossRefPubMedPubMedCentral Blackburn BJ, Jenkins MW, Rollins AM, Dupps WJ. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking. Front Bioeng Biotechnol. 2019;7:66.CrossRefPubMedPubMedCentral
24.
go back to reference Kirwan C, O'Keefe M, Lanigan B. Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyzer. Am J Ophthalmol. 2006;142(6):990–2.CrossRefPubMed Kirwan C, O'Keefe M, Lanigan B. Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyzer. Am J Ophthalmol. 2006;142(6):990–2.CrossRefPubMed
25.
go back to reference He M, Ding H, He H, Zhang C, Liu L, Zhong X. Corneal biomechanical properties in healthy children measured by corneal visualization scheimpflug technology. BMC Ophthalmol. 2017;17(1):70.CrossRefPubMedPubMedCentral He M, Ding H, He H, Zhang C, Liu L, Zhong X. Corneal biomechanical properties in healthy children measured by corneal visualization scheimpflug technology. BMC Ophthalmol. 2017;17(1):70.CrossRefPubMedPubMedCentral
26.
go back to reference Valbon BF, Ambrosio R Jr, Fontes BM, Alves MR. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol. 2013;76(4):229–32.CrossRefPubMed Valbon BF, Ambrosio R Jr, Fontes BM, Alves MR. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol. 2013;76(4):229–32.CrossRefPubMed
27.
go back to reference Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface. 2010;7(51):1475–85.CrossRefPubMedPubMedCentral Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface. 2010;7(51):1475–85.CrossRefPubMedPubMedCentral
28.
go back to reference Parssinen O, Kauppinen M, Viljanen A. The progression of myopia from its onset at age 8-12 to adulthood and the influence of heredity and external factors on myopic progression. A 23-year follow-up study. Acta Ophthalmol. 2014;92(8):730–9.CrossRefPubMed Parssinen O, Kauppinen M, Viljanen A. The progression of myopia from its onset at age 8-12 to adulthood and the influence of heredity and external factors on myopic progression. A 23-year follow-up study. Acta Ophthalmol. 2014;92(8):730–9.CrossRefPubMed
29.
go back to reference Ohno-Matsui K, Akiba M, Ishibashi T, Moriyama M. Observations of vascular structures within and posterior to sclera in eyes with pathologic myopia by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(11):7290–8.CrossRefPubMed Ohno-Matsui K, Akiba M, Ishibashi T, Moriyama M. Observations of vascular structures within and posterior to sclera in eyes with pathologic myopia by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(11):7290–8.CrossRefPubMed
30.
go back to reference Jonas JB, Xu L. Histological changes of high axial myopia. Eye (Lond). 2014;28(2):113–7.CrossRef Jonas JB, Xu L. Histological changes of high axial myopia. Eye (Lond). 2014;28(2):113–7.CrossRef
31.
go back to reference Harper AR, Summers JA. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp Eye Res. 2015;133:100–11.CrossRefPubMedPubMedCentral Harper AR, Summers JA. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp Eye Res. 2015;133:100–11.CrossRefPubMedPubMedCentral
32.
go back to reference Morgan SR, Dooley EP, Hocking PM, Inglehearn CF, Ali M, Sorensen TL, et al. An x-ray scattering study into the structural basis of corneal refractive function in an avian model. Biophys J. 2013;104(12):2586–94.CrossRefPubMedPubMedCentral Morgan SR, Dooley EP, Hocking PM, Inglehearn CF, Ali M, Sorensen TL, et al. An x-ray scattering study into the structural basis of corneal refractive function in an avian model. Biophys J. 2013;104(12):2586–94.CrossRefPubMedPubMedCentral
33.
go back to reference Kee CS, Hung LF, Qiao-Grider Y, Ramamirtham R, Smith EL 3rd. Astigmatism in monkeys with experimentally induced myopia or hyperopia. Optom Vis Sci. 2005;82(4):248–60.CrossRefPubMedPubMedCentral Kee CS, Hung LF, Qiao-Grider Y, Ramamirtham R, Smith EL 3rd. Astigmatism in monkeys with experimentally induced myopia or hyperopia. Optom Vis Sci. 2005;82(4):248–60.CrossRefPubMedPubMedCentral
34.
go back to reference Hayes BP, Fitzke FW, Hodos W, Holden AL. A morphological analysis of experimental myopia in young chickens. Invest Ophthalmol Vis Sci. 1986;27(6):981–91.PubMed Hayes BP, Fitzke FW, Hodos W, Holden AL. A morphological analysis of experimental myopia in young chickens. Invest Ophthalmol Vis Sci. 1986;27(6):981–91.PubMed
36.
go back to reference Chansangpetch S, Panpruk R, Manassakorn A, Tantisevi V, Rojanapongpun P, Hurst CP, et al. Impact of myopia on corneal biomechanics in Glaucoma and nonglaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(12):4990–6.CrossRefPubMedPubMedCentral Chansangpetch S, Panpruk R, Manassakorn A, Tantisevi V, Rojanapongpun P, Hurst CP, et al. Impact of myopia on corneal biomechanics in Glaucoma and nonglaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(12):4990–6.CrossRefPubMedPubMedCentral
37.
go back to reference Matalia J, Francis M, Gogri P, Panmand P, Matalia H, Sinha RA. Correlation of corneal biomechanical stiffness with refractive error and ocular biometry in a pediatric population. Cornea. 2017;36(10):1221–6.PubMed Matalia J, Francis M, Gogri P, Panmand P, Matalia H, Sinha RA. Correlation of corneal biomechanical stiffness with refractive error and ocular biometry in a pediatric population. Cornea. 2017;36(10):1221–6.PubMed
38.
go back to reference Long W, Zhao Y, Hu Y, Li Z, Zhang X, Zhao W, et al. Characteristics of corneal biomechanics in Chinese preschool children with different refractive status. Cornea. 2019;38(11):1395–9.CrossRefPubMed Long W, Zhao Y, Hu Y, Li Z, Zhang X, Zhao W, et al. Characteristics of corneal biomechanics in Chinese preschool children with different refractive status. Cornea. 2019;38(11):1395–9.CrossRefPubMed
39.
go back to reference Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005;31(1):146–55.CrossRefPubMed Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005;31(1):146–55.CrossRefPubMed
40.
go back to reference Joda AA, Shervin MM, Kook D, Elsheikh A. Development and validation of a correction equation for Corvis tonometry. Comput Methods Biomech Biomed Eng. 2016;19(9):943–53.CrossRef Joda AA, Shervin MM, Kook D, Elsheikh A. Development and validation of a correction equation for Corvis tonometry. Comput Methods Biomech Biomed Eng. 2016;19(9):943–53.CrossRef
41.
go back to reference Fernandez J, Rodriguez-Vallejo M, Martinez J, Tauste A, Salvestrini P, Pinero DP. New parameters for evaluating corneal biomechanics and intraocular pressure after small-incision lenticule extraction by Scheimpflug-based dynamic tonometry. J Cataract Refract Surg. 2017;43(6):803–11.CrossRefPubMed Fernandez J, Rodriguez-Vallejo M, Martinez J, Tauste A, Salvestrini P, Pinero DP. New parameters for evaluating corneal biomechanics and intraocular pressure after small-incision lenticule extraction by Scheimpflug-based dynamic tonometry. J Cataract Refract Surg. 2017;43(6):803–11.CrossRefPubMed
42.
go back to reference Eliasy A, Chen KJ, Vinciguerra R, Maklad O, Vinciguerra P, Ambrosio R Jr, et al. Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST. Exp Eye Res. 2018;175:98–102.CrossRefPubMed Eliasy A, Chen KJ, Vinciguerra R, Maklad O, Vinciguerra P, Ambrosio R Jr, et al. Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST. Exp Eye Res. 2018;175:98–102.CrossRefPubMed
43.
go back to reference Ma J, Wang Y, Hao W, Jhanji V. Comparative analysis of biomechanically corrected intraocular pressure with corneal visualization Scheimpflug technology versus conventional noncontact intraocular pressure. Int Ophthalmol. 2020;40(1):117–24.CrossRefPubMed Ma J, Wang Y, Hao W, Jhanji V. Comparative analysis of biomechanically corrected intraocular pressure with corneal visualization Scheimpflug technology versus conventional noncontact intraocular pressure. Int Ophthalmol. 2020;40(1):117–24.CrossRefPubMed
44.
go back to reference Matsuura M, Murata H, Fujino Y, Yanagisawa M, Nakao Y, Tokumo K, et al. Relationship between novel intraocular pressure measurement from Corvis ST and central corneal thickness and corneal hysteresis. Br J Ophthalmol. 2020;104(4):563–8.CrossRefPubMed Matsuura M, Murata H, Fujino Y, Yanagisawa M, Nakao Y, Tokumo K, et al. Relationship between novel intraocular pressure measurement from Corvis ST and central corneal thickness and corneal hysteresis. Br J Ophthalmol. 2020;104(4):563–8.CrossRefPubMed
46.
go back to reference Zhang Y, Wang Y, Li L, Dou R, Wu W, Wu D, et al. Corneal stiffness and its relationship with other corneal biomechanical and nonbiomechanical parameters in myopic eyes of Chinese patients. Cornea. 2018;37(7):881–5.CrossRefPubMed Zhang Y, Wang Y, Li L, Dou R, Wu W, Wu D, et al. Corneal stiffness and its relationship with other corneal biomechanical and nonbiomechanical parameters in myopic eyes of Chinese patients. Cornea. 2018;37(7):881–5.CrossRefPubMed
47.
go back to reference Gonzalez-Meijome JM, Villa-Collar C, Queiros A, Jorge J, Parafita MA. Pilot study on the influence of corneal biomechanical properties over the short term in response to corneal refractive therapy for myopia. Cornea. 2008;27(4):421–6.CrossRefPubMed Gonzalez-Meijome JM, Villa-Collar C, Queiros A, Jorge J, Parafita MA. Pilot study on the influence of corneal biomechanical properties over the short term in response to corneal refractive therapy for myopia. Cornea. 2008;27(4):421–6.CrossRefPubMed
48.
go back to reference Souza MB, de Medeiros FW, Villela FF, Alves MR. Relationship between the biomechanical properties of the cornea and anterior segment measurements. Clinics (Sao Paulo). 2018;73:e491. Souza MB, de Medeiros FW, Villela FF, Alves MR. Relationship between the biomechanical properties of the cornea and anterior segment measurements. Clinics (Sao Paulo). 2018;73:e491.
49.
go back to reference Horner DG, Soni PS, Vyas N, Himebaugh NL. Longitudinal changes in corneal asphericity in myopia. Optom Vis Sci. 2000;77(4):198–203.CrossRefPubMed Horner DG, Soni PS, Vyas N, Himebaugh NL. Longitudinal changes in corneal asphericity in myopia. Optom Vis Sci. 2000;77(4):198–203.CrossRefPubMed
Metadata
Title
Age distribution and associated factors of cornea biomechanical parameter stress-strain index in Chinese healthy population
Authors
Guihua Liu
Hua Rong
Ruxia Pei
Bei Du
Nan Jin
Di Wang
Chengcheng Jin
Ruihua Wei
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2020
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01704-6

Other articles of this Issue 1/2020

BMC Ophthalmology 1/2020 Go to the issue