Skip to main content
Top
Published in: BMC Ophthalmology 1/2018

Open Access 01-12-2018 | Research article

The influence of electromagnetic radiation on the measurement behaviour of the triggerfish® contact lens sensor

Authors: Dieter Franz Rabensteiner, Jasmin Rabensteiner, Christoph Faschinger

Published in: BMC Ophthalmology | Issue 1/2018

Login to get access

Abstract

Background

To assess a possible signal drift, noise and influences of electromagnetic radiation on the measurement behaviour of the Triggerfish® contact lens sensor, which might be mistaken as IOP fluctuations.

Methods

Contact lens sensors (Triggerfish®, SENSIMED AG, Lausanne, Switzerland) were fixed in a water bath. To reduce any external electromagnetic impulses, all plugs were removed from the sockets, no lights were switched on and no electronic devices, except a temperature logger were left in the test room. For 24 h signal drift, noise and the influences of a cordless telephone (Ascom d43 DECT Handset, EU DECT 1880–1900 MHz, Ascom Wireless, Baar, Switzerland), a smartphone (Sony Xperia Go ST27i, Sony Corporation, Tokyo, Japan) and a computer (Hewlett-Packard ProBook 650 15,6″ - D9S33AV, Hewlett-Packard Inc., Palo Alto, USA) on the measuring profile were analysed.

Results

Twenty-four-hour measurements without provoked external electromagnetic impulses yielded a profile without any signal drift and 8.2 mV eq noise. During the activation of the cordless telephone a maximum measurement variation of 3.2 mV eq. (4.1–7.3), smartphone 1.8 mV eq. (4.7–6.5) and computer 1.4 mV eq. (6.3–7.7) were observed.

Conclusions

During 24-h measurements there was no signal drift and a very low noise. Patients concerned about electronic devices possibly interfering with the measurements of the contact lens sensor, can be informed, that the use of their cordless telephone, smartphone or computer does not cause any problems. The amount of the signal noise might help to define actual IOP fluctuations. Temperature fluctuations might influence the measuring profile.
Literature
1.
go back to reference Göbel K, Rüfer F, Erb C. Physiology of aqueous humor formation, diurnal fluctuation of intraocular pressure and its significance for glaucoma. Klin Monatsbl Augenheilkd. 2011;228:104–8.CrossRef Göbel K, Rüfer F, Erb C. Physiology of aqueous humor formation, diurnal fluctuation of intraocular pressure and its significance for glaucoma. Klin Monatsbl Augenheilkd. 2011;228:104–8.CrossRef
2.
go back to reference Leidl MC, Choi CJ, Syed ZA, Melki SA. Intraocular pressure fluctuation and glaucoma progression: what do we know? Br J Ophthalmol. 2014;98:1315–9.CrossRef Leidl MC, Choi CJ, Syed ZA, Melki SA. Intraocular pressure fluctuation and glaucoma progression: what do we know? Br J Ophthalmol. 2014;98:1315–9.CrossRef
3.
go back to reference Caprioli J, Coleman AL. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology 2008;115:1123–3. Caprioli J, Coleman AL. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology 2008;115:1123–3.
4.
go back to reference Quaranta L, Riva I, Oddone F. 24-hour IOP fluctuation: myth or reality? J Mod Ophthalmol. 2016;2:103–9. Quaranta L, Riva I, Oddone F. 24-hour IOP fluctuation: myth or reality? J Mod Ophthalmol. 2016;2:103–9.
5.
go back to reference Sit AJ. Continuous monitoring of intraocular pressure: rationale and progress toward a clinical device. J Glaucoma. 2009;18:272–9.CrossRef Sit AJ. Continuous monitoring of intraocular pressure: rationale and progress toward a clinical device. J Glaucoma. 2009;18:272–9.CrossRef
6.
go back to reference Leonardi M, Pitchon EM, Bertsch A, Renaud P, Mermoud A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 2009;87:433–7.CrossRef Leonardi M, Pitchon EM, Bertsch A, Renaud P, Mermoud A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 2009;87:433–7.CrossRef
7.
go back to reference Mansouri K, Shaarawy T. Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma. Br J Ophthalmol. 2011;95:627–9.CrossRef Mansouri K, Shaarawy T. Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma. Br J Ophthalmol. 2011;95:627–9.CrossRef
8.
go back to reference Mansouri K, Medeiros FA, Tafreshi A, Weinreb RN. Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma. Arch Ophthalmol. 2012;130:1534–9.CrossRef Mansouri K, Medeiros FA, Tafreshi A, Weinreb RN. Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma. Arch Ophthalmol. 2012;130:1534–9.CrossRef
9.
go back to reference Mansouri K, Weinreb RN, Liu JHK. Efficacy of a contact lens sensor for monitoring 24-h intraocular pressure related patterns. Lin H, editor PLoS ONE. 2015;10:e0125530.CrossRef Mansouri K, Weinreb RN, Liu JHK. Efficacy of a contact lens sensor for monitoring 24-h intraocular pressure related patterns. Lin H, editor PLoS ONE. 2015;10:e0125530.CrossRef
10.
go back to reference Dunbar GE, Shen BY, Aref AA. The Sensimed triggerfish contact lens sensor: efficacy, safety, and patient perspectives. Clin Ophthalmol. 2017;11:875–82.CrossRef Dunbar GE, Shen BY, Aref AA. The Sensimed triggerfish contact lens sensor: efficacy, safety, and patient perspectives. Clin Ophthalmol. 2017;11:875–82.CrossRef
11.
go back to reference Faschinger C, Mossböck G, Validity KS. Reproducibility of sensor contact Lens profiles in comparison to Applanation tonometry in healthy eyes. Klin Monatsbl Augenheilkd. 2012;229:1209–14.CrossRef Faschinger C, Mossböck G, Validity KS. Reproducibility of sensor contact Lens profiles in comparison to Applanation tonometry in healthy eyes. Klin Monatsbl Augenheilkd. 2012;229:1209–14.CrossRef
12.
go back to reference Faschinger C, Mossböck G. Validity of the results of a contact lens sensor? JAMA Ophthalmol. 2013;131:696–7.CrossRef Faschinger C, Mossböck G. Validity of the results of a contact lens sensor? JAMA Ophthalmol. 2013;131:696–7.CrossRef
13.
go back to reference Holló G, Kóthy P, Vargha P. Evaluation of continuous 24-hour intraocular pressure monitoring for assessment of prostaglandin-induced pressure reduction in glaucoma. J Glaucoma. 2014;23:e6–12.CrossRef Holló G, Kóthy P, Vargha P. Evaluation of continuous 24-hour intraocular pressure monitoring for assessment of prostaglandin-induced pressure reduction in glaucoma. J Glaucoma. 2014;23:e6–12.CrossRef
14.
go back to reference Sunaric-Megevand G, Leuenberger P, Preußner P-R. Assessment of the triggerfish ™contact lens sensor for measurement of intraocular pressure variations. Acta Ophthalmol. 2014;92:e414–5.CrossRef Sunaric-Megevand G, Leuenberger P, Preußner P-R. Assessment of the triggerfish ™contact lens sensor for measurement of intraocular pressure variations. Acta Ophthalmol. 2014;92:e414–5.CrossRef
15.
go back to reference Faschinger C. Contact Lens sensor triggerfish – what do we know? European Ophthalmic Review. 2016;10:113.CrossRef Faschinger C. Contact Lens sensor triggerfish – what do we know? European Ophthalmic Review. 2016;10:113.CrossRef
16.
go back to reference Vitish-Sharma P, Acheson AG, Stead R, Sharp J, Abbas A, Hovan M, et al. Can the SENSIMED triggerfish(®) lens data be used as an accurate measure of intraocular pressure? Acta Ophthalmol. 2017;131:696. Vitish-Sharma P, Acheson AG, Stead R, Sharp J, Abbas A, Hovan M, et al. Can the SENSIMED triggerfish(®) lens data be used as an accurate measure of intraocular pressure? Acta Ophthalmol. 2017;131:696.
17.
go back to reference Anderson DR, Grant WM. The influence of position on intraocular pressure. Investig Ophthalmol. 1973;12:204–12. Anderson DR, Grant WM. The influence of position on intraocular pressure. Investig Ophthalmol. 1973;12:204–12.
18.
go back to reference Prata TS, De Moraes CGV, Kanadani FN, Ritch R, Paranhos A. Posture-induced intraocular pressure changes: considerations regarding body position in glaucoma patients. Surv Ophthalmol. 2010;55:445–53.CrossRef Prata TS, De Moraes CGV, Kanadani FN, Ritch R, Paranhos A. Posture-induced intraocular pressure changes: considerations regarding body position in glaucoma patients. Surv Ophthalmol. 2010;55:445–53.CrossRef
19.
go back to reference Faschinger CW, Rabensteiner DF, Mossböck G. How do temperature variations influence the signal in the triggerfish contact lens sensor? Spektrum Augenheilkd. 2014;28:197–204.CrossRef Faschinger CW, Rabensteiner DF, Mossböck G. How do temperature variations influence the signal in the triggerfish contact lens sensor? Spektrum Augenheilkd. 2014;28:197–204.CrossRef
Metadata
Title
The influence of electromagnetic radiation on the measurement behaviour of the triggerfish® contact lens sensor
Authors
Dieter Franz Rabensteiner
Jasmin Rabensteiner
Christoph Faschinger
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2018
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-1013-x

Other articles of this Issue 1/2018

BMC Ophthalmology 1/2018 Go to the issue