Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Colorectal Cancer | Research

Proteome-wide analysis reveals potential therapeutic targets for Colorectal cancer: a two-sample mendelian randomization study

Authors: Yi-Xin Cai, Yi-Qing Wu, Jie Liu, Huanle Pan, Wenhai Deng, Weijian Sun, Congying Xie, Xiu-Feng Huang

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Colorectal cancer (CRC) is a leading cause of cancer-related mortality, highlighting an unmet clinical need for more effective therapies. This study aims to evaluate the causal relationship between 4,489 plasma proteins and CRC to identify potential therapeutic targets for CRC.

Methods

We conducted two-sample Mendelian randomization (MR) analysis to examine the causal effects of plasma proteins on CRC. Mediation analysis was performed to assess the indirect effects of plasma proteins on CRC through associated risk factors. In addition, we conducted a phenome-wide association study using the UK Biobank dataset to examine associations between these plasma proteins and other phenotypes.

Results

Out of 4,489 plasma proteins, MR analysis revealed causal associations with CRC for 23 proteins, including VIMP, MICB, TNFRSF11B, C5orf38 and SLC5A8. Our findings also confirm the associations between reported risk factors and CRC. Mediation analysis identified mediating effects of proteins on CRC outcomes through risk factors. Furthermore, MR analysis identified 154 plasma proteins are causally linked to at least one CRC risk factor.

Conclusions

Our study evaluated the causal relationships between plasma proteins and CRC, providing a more complete understanding of potential therapeutic targets for CRC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
2.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–386.CrossRefPubMed Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–386.CrossRefPubMed
3.
go back to reference Suzuki S, Goto A, Nakatochi M, Narita A, Yamaji T, Sawada N, Katagiri R, Iwagami M, Hanyuda A, Hachiya T, et al. Body mass index and Colorectal cancer risk: a mendelian randomization study. Cancer Sci. 2021;112(4):1579–88.CrossRefPubMedPubMedCentral Suzuki S, Goto A, Nakatochi M, Narita A, Yamaji T, Sawada N, Katagiri R, Iwagami M, Hanyuda A, Hachiya T, et al. Body mass index and Colorectal cancer risk: a mendelian randomization study. Cancer Sci. 2021;112(4):1579–88.CrossRefPubMedPubMedCentral
4.
go back to reference Thrift AP, Gong J, Peters U, Chang-Claude J, Rudolph A, Slattery ML, Chan AT, Locke AE, Kahali B, Justice AE, et al. Mendelian randomization study of body Mass Index and Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev. 2015;24(7):1024–31.CrossRefPubMedPubMedCentral Thrift AP, Gong J, Peters U, Chang-Claude J, Rudolph A, Slattery ML, Chan AT, Locke AE, Kahali B, Justice AE, et al. Mendelian randomization study of body Mass Index and Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev. 2015;24(7):1024–31.CrossRefPubMedPubMedCentral
5.
go back to reference Wang X, Dai JY, Albanes D, Arndt V, Berndt SI, Bezieau S, Brenner H, Buchanan DD, Butterbach K, Caan B, et al. Mendelian randomization analysis of C-reactive protein on Colorectal cancer risk. Int J Epidemiol. 2019;48(3):767–80.CrossRefPubMed Wang X, Dai JY, Albanes D, Arndt V, Berndt SI, Bezieau S, Brenner H, Buchanan DD, Butterbach K, Caan B, et al. Mendelian randomization analysis of C-reactive protein on Colorectal cancer risk. Int J Epidemiol. 2019;48(3):767–80.CrossRefPubMed
6.
go back to reference Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34.CrossRefPubMed Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34.CrossRefPubMed
7.
go back to reference Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM. Pharmacogenomics of GPCR Drug targets. Cell. 2018;172(1–2):41–54. e19.CrossRefPubMedPubMedCentral Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM. Pharmacogenomics of GPCR Drug targets. Cell. 2018;172(1–2):41–54. e19.CrossRefPubMedPubMedCentral
8.
go back to reference Dimou N, Mori N, Harlid S, Harbs J, Martin RM, Smith-Byrne K, Papadimitriou N, Bishop DT, Casey G, Colorado-Yohar SM, et al. Circulating levels of testosterone, sex hormone binding globulin and Colorectal Cancer risk: observational and mendelian randomization analyses. Cancer Epidemiol Biomarkers Prev. 2021;30(7):1336–48.CrossRefPubMedPubMedCentral Dimou N, Mori N, Harlid S, Harbs J, Martin RM, Smith-Byrne K, Papadimitriou N, Bishop DT, Casey G, Colorado-Yohar SM, et al. Circulating levels of testosterone, sex hormone binding globulin and Colorectal Cancer risk: observational and mendelian randomization analyses. Cancer Epidemiol Biomarkers Prev. 2021;30(7):1336–48.CrossRefPubMedPubMedCentral
9.
go back to reference Coghlin C, Murray GI. Progress in the identification of plasma biomarkers of Colorectal cancer. Proteomics. 2013;13(15):2227–8.CrossRefPubMed Coghlin C, Murray GI. Progress in the identification of plasma biomarkers of Colorectal cancer. Proteomics. 2013;13(15):2227–8.CrossRefPubMed
10.
go back to reference Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558(7708):73–9.CrossRefPubMedPubMedCentral Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558(7708):73–9.CrossRefPubMedPubMedCentral
11.
go back to reference Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, Gunnarsdottir K, Helgason A, Oddsson A, Halldorsson BV, et al. Large-scale integration of the plasma proteome with genetics and Disease. Nat Genet. 2021;53(12):1712–21.CrossRefPubMed Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, Gunnarsdottir K, Helgason A, Oddsson A, Halldorsson BV, et al. Large-scale integration of the plasma proteome with genetics and Disease. Nat Genet. 2021;53(12):1712–21.CrossRefPubMed
12.
go back to reference Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman AK, Schork A, Page K, Zhernakova DV, Wu Y, Peters J, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab. 2020;2(10):1135–48.CrossRefPubMedPubMedCentral Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman AK, Schork A, Page K, Zhernakova DV, Wu Y, Peters J, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab. 2020;2(10):1135–48.CrossRefPubMedPubMedCentral
13.
go back to reference Moncla LM, Mathieu S, Sylla MS, Bosse Y, Theriault S, Arsenault BJ, Mathieu P. Mendelian randomization of circulating proteome identifies actionable targets in Heart Failure. BMC Genomics. 2022;23(1):588.CrossRefPubMedPubMedCentral Moncla LM, Mathieu S, Sylla MS, Bosse Y, Theriault S, Arsenault BJ, Mathieu P. Mendelian randomization of circulating proteome identifies actionable targets in Heart Failure. BMC Genomics. 2022;23(1):588.CrossRefPubMedPubMedCentral
14.
go back to reference Luo S, Clarke SLN, Ramanan AV, Thompson SD, Langefeld CD, Marion MC, Grom AA, Schooling CM, Gaunt TR, Yeung SLA, et al. Platelet glycoprotein ib alpha-chain as a putative therapeutic target for juvenile idiopathic arthritis: a mendelian randomization study. Arthritis Rheumatol. 2021;73(4):693–701.CrossRefPubMedPubMedCentral Luo S, Clarke SLN, Ramanan AV, Thompson SD, Langefeld CD, Marion MC, Grom AA, Schooling CM, Gaunt TR, Yeung SLA, et al. Platelet glycoprotein ib alpha-chain as a putative therapeutic target for juvenile idiopathic arthritis: a mendelian randomization study. Arthritis Rheumatol. 2021;73(4):693–701.CrossRefPubMedPubMedCentral
15.
go back to reference Zhao SS, Bovijn J, Hughes DM, Sha T, Zeng C, Lyu H. Genetically predicted vitamin K levels and risk of osteoarthritis: mendelian randomization study. Semin Arthritis Rheum. 2022;55:152030.CrossRefPubMed Zhao SS, Bovijn J, Hughes DM, Sha T, Zeng C, Lyu H. Genetically predicted vitamin K levels and risk of osteoarthritis: mendelian randomization study. Semin Arthritis Rheum. 2022;55:152030.CrossRefPubMed
16.
go back to reference Sleiman PM, Grant SF. Mendelian randomization in the era of genomewide association studies. Clin Chem. 2010;56(5):723–8.CrossRefPubMed Sleiman PM, Grant SF. Mendelian randomization in the era of genomewide association studies. Clin Chem. 2010;56(5):723–8.CrossRefPubMed
17.
go back to reference Smith GD, Ebrahim S. Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of Disease? Int J Epidemiol. 2003;32(1):1–22.CrossRefPubMed Smith GD, Ebrahim S. Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of Disease? Int J Epidemiol. 2003;32(1):1–22.CrossRefPubMed
18.
go back to reference Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7.
19.
go back to reference Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, LeFaive J, VandeHaar P, Gagliano SA, Gifford A, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet. 2018;50(9):1335–41.CrossRefPubMedPubMedCentral Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, LeFaive J, VandeHaar P, Gagliano SA, Gifford A, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet. 2018;50(9):1335–41.CrossRefPubMedPubMedCentral
20.
go back to reference Carter AR, Sanderson E, Hammerton G, Richmond RC, Davey Smith G, Heron J, Taylor AE, Davies NM, Howe LD. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol. 2021;36(5):465–78.CrossRefPubMedPubMedCentral Carter AR, Sanderson E, Hammerton G, Richmond RC, Davey Smith G, Heron J, Taylor AE, Davies NM, Howe LD. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol. 2021;36(5):465–78.CrossRefPubMedPubMedCentral
21.
go back to reference Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, Gutteridge A, Erola P, Liu Y, Luo S, et al. Phenome-wide mendelian randomization mapping the influence of the plasma proteome on complex Diseases. Nat Genet. 2020;52(10):1122–31.CrossRefPubMedPubMedCentral Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, Gutteridge A, Erola P, Liu Y, Luo S, et al. Phenome-wide mendelian randomization mapping the influence of the plasma proteome on complex Diseases. Nat Genet. 2020;52(10):1122–31.CrossRefPubMedPubMedCentral
22.
go back to reference Bubenik JL, Miniard AC, Driscoll DM. Alternative transcripts and 3’UTR elements govern the incorporation of selenocysteine into selenoprotein S. PLoS ONE. 2013;8(4):e62102.CrossRefPubMedPubMedCentral Bubenik JL, Miniard AC, Driscoll DM. Alternative transcripts and 3’UTR elements govern the incorporation of selenocysteine into selenoprotein S. PLoS ONE. 2013;8(4):e62102.CrossRefPubMedPubMedCentral
23.
go back to reference Hariton E, Locascio JJ. Randomised controlled trials - the gold standard for effectiveness research: study design: randomised controlled trials. BJOG. 2018;125(13):1716.CrossRefPubMedPubMedCentral Hariton E, Locascio JJ. Randomised controlled trials - the gold standard for effectiveness research: study design: randomised controlled trials. BJOG. 2018;125(13):1716.CrossRefPubMedPubMedCentral
25.
go back to reference Shibata T, Arisawa T, Tahara T, Ohkubo M, Yoshioka D, Maruyama N, Fujita H, Kamiya Y, Nakamura M, Nagasaka M, et al. Selenoprotein S (SEPS1) gene – 105G > A promoter polymorphism influences the susceptibility to gastric cancer in the Japanese population. BMC Gastroenterol. 2009;9:2.CrossRefPubMedPubMedCentral Shibata T, Arisawa T, Tahara T, Ohkubo M, Yoshioka D, Maruyama N, Fujita H, Kamiya Y, Nakamura M, Nagasaka M, et al. Selenoprotein S (SEPS1) gene – 105G > A promoter polymorphism influences the susceptibility to gastric cancer in the Japanese population. BMC Gastroenterol. 2009;9:2.CrossRefPubMedPubMedCentral
26.
go back to reference Li J, Zhu Y, Zhou Y, Jiang H, Chen Z, Lu B, Shen X. The SELS rs34713741 polymorphism is Associated with susceptibility to Colorectal Cancer and gastric Cancer: a Meta-analysis. Genet Test Mol Biomarkers. 2020;24(12):835–44.CrossRefPubMed Li J, Zhu Y, Zhou Y, Jiang H, Chen Z, Lu B, Shen X. The SELS rs34713741 polymorphism is Associated with susceptibility to Colorectal Cancer and gastric Cancer: a Meta-analysis. Genet Test Mol Biomarkers. 2020;24(12):835–44.CrossRefPubMed
27.
go back to reference Kim HS, Yoon G, Do SI, Kim SJ, Kim YW. Down-regulation of osteoprotegerin expression as a novel biomarker for colorectal carcinoma. Oncotarget. 2016;7(12):15187–99.CrossRefPubMedPubMedCentral Kim HS, Yoon G, Do SI, Kim SJ, Kim YW. Down-regulation of osteoprotegerin expression as a novel biomarker for colorectal carcinoma. Oncotarget. 2016;7(12):15187–99.CrossRefPubMedPubMedCentral
28.
go back to reference Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura K. Critical role for Tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against Tumor development. J Exp Med. 2002;195(2):161–9.CrossRefPubMedPubMedCentral Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura K. Critical role for Tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against Tumor development. J Exp Med. 2002;195(2):161–9.CrossRefPubMedPubMedCentral
29.
go back to reference Brown JM, Corey E, Lee ZD, True LD, Yun TJ, Tondravi M, Vessella RL. Osteoprotegerin and rank ligand expression in Prostate cancer. Urology. 2001;57(4):611–6.CrossRefPubMed Brown JM, Corey E, Lee ZD, True LD, Yun TJ, Tondravi M, Vessella RL. Osteoprotegerin and rank ligand expression in Prostate cancer. Urology. 2001;57(4):611–6.CrossRefPubMed
30.
go back to reference De Toni EN, Thieme SE, Herbst A, Behrens A, Stieber P, Jung A, Blum H, Goke B, Kolligs FT. OPG is regulated by beta-catenin and mediates resistance to TRAIL-induced apoptosis in colon Cancer. Clin Cancer Res. 2008;14(15):4713–8.CrossRefPubMed De Toni EN, Thieme SE, Herbst A, Behrens A, Stieber P, Jung A, Blum H, Goke B, Kolligs FT. OPG is regulated by beta-catenin and mediates resistance to TRAIL-induced apoptosis in colon Cancer. Clin Cancer Res. 2008;14(15):4713–8.CrossRefPubMed
31.
go back to reference Holen I, Cross SS, Neville-Webbe HL, Cross NA, Balasubramanian SP, Croucher PI, Evans CA, Lippitt JM, Coleman RE, Eaton CL. Osteoprotegerin (OPG) expression by Breast cancer cells in vitro and breast tumours in vivo–a role in tumour cell survival? Breast Cancer Res Treat. 2005;92(3):207–15.CrossRefPubMed Holen I, Cross SS, Neville-Webbe HL, Cross NA, Balasubramanian SP, Croucher PI, Evans CA, Lippitt JM, Coleman RE, Eaton CL. Osteoprotegerin (OPG) expression by Breast cancer cells in vitro and breast tumours in vivo–a role in tumour cell survival? Breast Cancer Res Treat. 2005;92(3):207–15.CrossRefPubMed
32.
go back to reference Holen I, Croucher PI, Hamdy FC, Eaton CL. Osteoprotegerin (OPG) is a survival factor for human Prostate cancer cells. Cancer Res. 2002;62(6):1619–23.PubMed Holen I, Croucher PI, Hamdy FC, Eaton CL. Osteoprotegerin (OPG) is a survival factor for human Prostate cancer cells. Cancer Res. 2002;62(6):1619–23.PubMed
33.
go back to reference Naumann U, Wick W, Beschorner R, Meyermann R, Weller M. Expression and functional activity of osteoprotegerin in human malignant gliomas. Acta Neuropathol. 2004;107(1):17–22.CrossRefPubMed Naumann U, Wick W, Beschorner R, Meyermann R, Weller M. Expression and functional activity of osteoprotegerin in human malignant gliomas. Acta Neuropathol. 2004;107(1):17–22.CrossRefPubMed
34.
go back to reference Pettersen I, Bakkelund W, Smedsrod B, Sveinbjornsson B. Osteoprotegerin is expressed in colon carcinoma cells. Anticancer Res. 2005;25(6B):3809–16.PubMed Pettersen I, Bakkelund W, Smedsrod B, Sveinbjornsson B. Osteoprotegerin is expressed in colon carcinoma cells. Anticancer Res. 2005;25(6B):3809–16.PubMed
35.
go back to reference Tsukamoto S, Ishikawa T, Iida S, Ishiguro M, Mogushi K, Mizushima H, Uetake H, Tanaka H, Sugihara K. Clinical significance of osteoprotegerin expression in human Colorectal cancer. Clin Cancer Res. 2011;17(8):2444–50.CrossRefPubMed Tsukamoto S, Ishikawa T, Iida S, Ishiguro M, Mogushi K, Mizushima H, Uetake H, Tanaka H, Sugihara K. Clinical significance of osteoprotegerin expression in human Colorectal cancer. Clin Cancer Res. 2011;17(8):2444–50.CrossRefPubMed
36.
go back to reference Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on Drugs. Nucleic Acids Res. 2011;39(Database issue):D1035–1041.CrossRefPubMed Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on Drugs. Nucleic Acids Res. 2011;39(Database issue):D1035–1041.CrossRefPubMed
37.
go back to reference Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(Database issue):D1091–1097.CrossRefPubMed Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(Database issue):D1091–1097.CrossRefPubMed
38.
go back to reference Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.CrossRefPubMed Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.CrossRefPubMed
39.
go back to reference Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. DrugBank: a knowledgebase for Drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36(Database issue):D901–906.CrossRefPubMed Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. DrugBank: a knowledgebase for Drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36(Database issue):D901–906.CrossRefPubMed
40.
go back to reference Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–672.CrossRefPubMed Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–672.CrossRefPubMed
Metadata
Title
Proteome-wide analysis reveals potential therapeutic targets for Colorectal cancer: a two-sample mendelian randomization study
Authors
Yi-Xin Cai
Yi-Qing Wu
Jie Liu
Huanle Pan
Wenhai Deng
Weijian Sun
Congying Xie
Xiu-Feng Huang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11669-6

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine