Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Glioblastoma | Research

SLC25A32 promotes malignant progression of glioblastoma by activating PI3K-AKT signaling pathway

Authors: Zhiwei Xue, Jiwei Wang, Zide Wang, Junzhi Liu, Jiangli Zhao, Xuchen Liu, Yan Zhang, Guowei Liu, Zhimin Zhao, Wenjie Li, Qing Zhang, Xingang Li, Bin Huang, Xinyu Wang

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Solute carrier family 25 member 32 (SLC25A32) is an important member of SLC25A family and plays a role in folate transport metabolism. However, the mechanism and function of SLC25A32 in the progression of human glioblastoma (GBM) remain unclear.

Methods

In this study, folate related gene analysis was performed to explore gene expression profiles in low-grade glioma (LGG) and GBM. Western blotting, real-time quantitative PCR (qRT-PCR), and immunohistochemistry (IHC) were used to confirm the expression levels of SLC25A32 in GBM tissues and cell lines. CCK-8 assays, colony formation assays, and Edu assays were performed to assess the role of SLC25A32 on proliferation in GBM in vitro. A 3D sphere invasion assay and an ex vivo co-culture invasion model were performed to assess the effects of SLC25A32 on invasion in GBM.

Results

Elevated expression of SLC25A32 was observed in GBM, and high SLC25A32 expression was associated with a high glioma grade and poorer prognosis. Immunohistochemistry performed with anti-SLC25A32 on samples from an independent cohort of patients confirmed these results. Knockdown of SLC25A32 inhibited the proliferation and invasion of GBM cells, but overexpression of SLC25A32 significantly promoted cell growth and invasion. These effects were mainly due to the activation of the PI3K-AKT-mTOR signaling pathway.

Conclusion

Our study demonstrated that SLC25A32 plays a significant role in promoting the malignant phenotype of GBM. Therefore, SLC25A32 can be used as an independent prognostic factor in patients with GBM, providing a new target for the comprehensive treatment of GBM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gould J. Breaking down the epidemiology of brain cancer[J]. Nature. 2018;561(7724):40–s41.CrossRef Gould J. Breaking down the epidemiology of brain cancer[J]. Nature. 2018;561(7724):40–s41.CrossRef
2.
go back to reference Nieland L, Morsett LM, Broekman MLD, et al. Extracellular vesicle-mediated bilateral communication between Glioblastoma and Astrocytes[J]. Trends Neurosci. 2021;44(3):215–26.CrossRefPubMed Nieland L, Morsett LM, Broekman MLD, et al. Extracellular vesicle-mediated bilateral communication between Glioblastoma and Astrocytes[J]. Trends Neurosci. 2021;44(3):215–26.CrossRefPubMed
3.
go back to reference Vargas López AJ. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and european Society of Neuro-Oncology (EANO) consensus review on current management and future directions[J]. Neuro Oncol. 2021;23(3):502–3.CrossRefPubMedPubMedCentral Vargas López AJ. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and european Society of Neuro-Oncology (EANO) consensus review on current management and future directions[J]. Neuro Oncol. 2021;23(3):502–3.CrossRefPubMedPubMedCentral
4.
go back to reference Varn FS, Johnson KC, Martinek J, et al. Glioma progression is shaped by genetic evolution and microenvironment interactions[J]. Cell. 2022;185(12):2184–2199e16.CrossRefPubMedPubMedCentral Varn FS, Johnson KC, Martinek J, et al. Glioma progression is shaped by genetic evolution and microenvironment interactions[J]. Cell. 2022;185(12):2184–2199e16.CrossRefPubMedPubMedCentral
5.
go back to reference Ostrom QT, Bauchet L, Davis FG, et al. Response to “the epidemiology of glioma in adults: a ‘state of the science’ review“[J]. Neuro Oncol. 2015;17(4):624–6.CrossRefPubMedPubMedCentral Ostrom QT, Bauchet L, Davis FG, et al. Response to “the epidemiology of glioma in adults: a ‘state of the science’ review“[J]. Neuro Oncol. 2015;17(4):624–6.CrossRefPubMedPubMedCentral
6.
7.
go back to reference Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid[J]. N Engl J Med. 1948;238(23):787–93.CrossRefPubMed Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid[J]. N Engl J Med. 1948;238(23):787–93.CrossRefPubMed
9.
go back to reference Yang M, Vousden KH. Serine and one-carbon metabolism in cancer[J]. Nat Rev Cancer. 2016;16(10):650–62.CrossRefPubMed Yang M, Vousden KH. Serine and one-carbon metabolism in cancer[J]. Nat Rev Cancer. 2016;16(10):650–62.CrossRefPubMed
10.
go back to reference Hediger MA, Clémençon B, Burrier RE, et al. The ABCs of membrane transporters in health and disease (SLC series): introduction[J]. Mol Aspects Med. 2013;34(2–3):95–107.CrossRefPubMedPubMedCentral Hediger MA, Clémençon B, Burrier RE, et al. The ABCs of membrane transporters in health and disease (SLC series): introduction[J]. Mol Aspects Med. 2013;34(2–3):95–107.CrossRefPubMedPubMedCentral
11.
go back to reference Hediger MA, Romero MF, Peng JB, et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction[J]. Pflugers Arch. 2004;447(5):465–8.CrossRefPubMed Hediger MA, Romero MF, Peng JB, et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction[J]. Pflugers Arch. 2004;447(5):465–8.CrossRefPubMed
12.
go back to reference Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology[J]. Mol Aspects Med, 2013, 34(2–3): 465 – 84. Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology[J]. Mol Aspects Med, 2013, 34(2–3): 465 – 84.
13.
go back to reference Rochette L, Meloux A, Zeller M et al. Mitochondrial SLC25 carriers: novel targets for Cancer Therapy[J]. Molecules, 2020, 25(10). Rochette L, Meloux A, Zeller M et al. Mitochondrial SLC25 carriers: novel targets for Cancer Therapy[J]. Molecules, 2020, 25(10).
14.
go back to reference Fernandez HR, Gadre SM, Tan M, et al. The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer[J]. Cell Death Differ. 2018;25(7):1239–58.CrossRefPubMedPubMedCentral Fernandez HR, Gadre SM, Tan M, et al. The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer[J]. Cell Death Differ. 2018;25(7):1239–58.CrossRefPubMedPubMedCentral
15.
go back to reference Kolukula VK, Sahu G, Wellstein A, et al. SLC25A1, or CIC, is a novel transcriptional target of mutant p53 and a negative tumor prognostic marker[J]. Oncotarget. 2014;5(5):1212–25.CrossRefPubMedPubMedCentral Kolukula VK, Sahu G, Wellstein A, et al. SLC25A1, or CIC, is a novel transcriptional target of mutant p53 and a negative tumor prognostic marker[J]. Oncotarget. 2014;5(5):1212–25.CrossRefPubMedPubMedCentral
16.
go back to reference Clémençon B, Babot M, Trézéguet V. The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction[J]. Mol Aspects Med, 2013, 34(2–3): 485 – 93. Clémençon B, Babot M, Trézéguet V. The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction[J]. Mol Aspects Med, 2013, 34(2–3): 485 – 93.
17.
go back to reference Trisolini L, Laera L, Favia M et al. Differential expression of ADP/ATP carriers as a biomarker of metabolic remodeling and survival in kidney Cancers[J]. Biomolecules, 2020, 11(1). Trisolini L, Laera L, Favia M et al. Differential expression of ADP/ATP carriers as a biomarker of metabolic remodeling and survival in kidney Cancers[J]. Biomolecules, 2020, 11(1).
18.
go back to reference Infantino V, Pierri CL, Iacobazzi V. Metabolic routes in inflammation: the citrate pathway and its potential as therapeutic Target[J]. Curr Med Chem. 2019;26(40):7104–16.CrossRefPubMed Infantino V, Pierri CL, Iacobazzi V. Metabolic routes in inflammation: the citrate pathway and its potential as therapeutic Target[J]. Curr Med Chem. 2019;26(40):7104–16.CrossRefPubMed
19.
go back to reference Amoedo ND, Punzi G, Obre E, et al. AGC1/2, the mitochondrial aspartate-glutamate carriers[J]. Biochim Biophys Acta. 2016;1863(10):2394–412.CrossRefPubMed Amoedo ND, Punzi G, Obre E, et al. AGC1/2, the mitochondrial aspartate-glutamate carriers[J]. Biochim Biophys Acta. 2016;1863(10):2394–412.CrossRefPubMed
20.
go back to reference Raho S, Capobianco L, Malivindi R, et al. KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth[J]. Nat Metab. 2020;2(12):1373–81.CrossRefPubMed Raho S, Capobianco L, Malivindi R, et al. KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth[J]. Nat Metab. 2020;2(12):1373–81.CrossRefPubMed
21.
go back to reference Tan M, Mosaoa R, Graham GT, et al. Inhibition of the mitochondrial citrate carrier, Slc25a1, reverts steatosis, glucose intolerance, and inflammation in preclinical models of NAFLD/NASH[J]. Cell Death Differ. 2020;27(7):2143–57.CrossRefPubMedPubMedCentral Tan M, Mosaoa R, Graham GT, et al. Inhibition of the mitochondrial citrate carrier, Slc25a1, reverts steatosis, glucose intolerance, and inflammation in preclinical models of NAFLD/NASH[J]. Cell Death Differ. 2020;27(7):2143–57.CrossRefPubMedPubMedCentral
22.
go back to reference Peng MZ, Shao YX, Li XZ, et al. Mitochondrial FAD shortage in SLC25A32 deficiency affects folate-mediated one-carbon metabolism[J]. Cell Mol Life Sci. 2022;79(7):375.CrossRefPubMed Peng MZ, Shao YX, Li XZ, et al. Mitochondrial FAD shortage in SLC25A32 deficiency affects folate-mediated one-carbon metabolism[J]. Cell Mol Life Sci. 2022;79(7):375.CrossRefPubMed
23.
go back to reference Li H, Lu YF, Chen H, et al. Dysregulation of metallothionein and circadian genes in human hepatocellular carcinoma[J]. Chronobiol Int. 2017;34(2):192–202.CrossRefPubMed Li H, Lu YF, Chen H, et al. Dysregulation of metallothionein and circadian genes in human hepatocellular carcinoma[J]. Chronobiol Int. 2017;34(2):192–202.CrossRefPubMed
24.
go back to reference Santoro V, Kovalenko I, Vriens K, et al. SLC25A32 sustains cancer cell proliferation by regulating flavin adenine nucleotide (FAD) metabolism[J]. Oncotarget. 2020;11(8):801–12.CrossRefPubMedPubMedCentral Santoro V, Kovalenko I, Vriens K, et al. SLC25A32 sustains cancer cell proliferation by regulating flavin adenine nucleotide (FAD) metabolism[J]. Oncotarget. 2020;11(8):801–12.CrossRefPubMedPubMedCentral
25.
go back to reference Titus SA, Moran RG. Retrovirally mediated complementation of the glyB phenotype. Cloning of a human gene encoding the carrier for entry of folates into mitochondria[J]. J Biol Chem. 2000;275(47):36811–7.CrossRefPubMed Titus SA, Moran RG. Retrovirally mediated complementation of the glyB phenotype. Cloning of a human gene encoding the carrier for entry of folates into mitochondria[J]. J Biol Chem. 2000;275(47):36811–7.CrossRefPubMed
26.
go back to reference Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res. 2015;43(7):e47.CrossRefPubMedPubMedCentral Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res. 2015;43(7):e47.CrossRefPubMedPubMedCentral
27.
go back to reference Han M, Wang S, Fritah S, et al. Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling[J]. Brain. 2020;143(2):512–30.CrossRefPubMed Han M, Wang S, Fritah S, et al. Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling[J]. Brain. 2020;143(2):512–30.CrossRefPubMed
30.
go back to reference Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of pathways and genomes[J]. Nucleic Acids Res. 2023;51(D1):D587–d592.CrossRefPubMed Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of pathways and genomes[J]. Nucleic Acids Res. 2023;51(D1):D587–d592.CrossRefPubMed
31.
go back to reference Gutiérrez-Aguilar M, Baines CP. Physiological and pathological roles of mitochondrial SLC25 carriers[J]. Biochem J. 2013;454(3):371–86.CrossRefPubMed Gutiérrez-Aguilar M, Baines CP. Physiological and pathological roles of mitochondrial SLC25 carriers[J]. Biochem J. 2013;454(3):371–86.CrossRefPubMed
32.
33.
go back to reference Spaan AN, Ijlst L, Van Roermund CW, et al. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency[J]. Mol Genet Metab. 2005;86(4):441–7.CrossRefPubMed Spaan AN, Ijlst L, Van Roermund CW, et al. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency[J]. Mol Genet Metab. 2005;86(4):441–7.CrossRefPubMed
34.
go back to reference Mereis M, Wanders RJA, Schoonen M, et al. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies[J]. Int J Biochem Cell Biol. 2021;132:105899.CrossRefPubMed Mereis M, Wanders RJA, Schoonen M, et al. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies[J]. Int J Biochem Cell Biol. 2021;132:105899.CrossRefPubMed
35.
go back to reference Becker ML, Van Haandel L, Gaedigk R, et al. Red blood cell folate concentrations and polyglutamate distribution in juvenile arthritis: predictors of folate variability[J]. Pharmacogenet Genomics. 2012;22(4):236–46.CrossRefPubMed Becker ML, Van Haandel L, Gaedigk R, et al. Red blood cell folate concentrations and polyglutamate distribution in juvenile arthritis: predictors of folate variability[J]. Pharmacogenet Genomics. 2012;22(4):236–46.CrossRefPubMed
Metadata
Title
SLC25A32 promotes malignant progression of glioblastoma by activating PI3K-AKT signaling pathway
Authors
Zhiwei Xue
Jiwei Wang
Zide Wang
Junzhi Liu
Jiangli Zhao
Xuchen Liu
Yan Zhang
Guowei Liu
Zhimin Zhao
Wenjie Li
Qing Zhang
Xingang Li
Bin Huang
Xinyu Wang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11097-6

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine