Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | NSCLC | Research

Tumor-infiltrating CD36+CD8+T cells determine exhausted tumor microenvironment and correlate with inferior response to chemotherapy in non-small cell lung cancer

Authors: Yong-Qiang Ao, Jian Gao, Ling-Xian Zhang, Jie Deng, Shuai Wang, Miao Lin, Hai-Kun Wang, Jian-Yong Ding, Jia-Hao Jiang

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

The scavenger receptor CD36 was reported to be highly expressed on tumor-infiltrating CD8+ T cells, but the clinical role remains obscure. This study aims to explore the infiltration and clinical value of CD36+CD8+ T cells in NSCLC.

Methods

Immunohistochemistry and immunofluorescence were conducted for survival analyses and immunological evaluation in 232 NSCLC patients in Zhongshan Hospital. Flow cytometry analyses were carried out to assess the immune cells from fresh tumor samples, non-tumor tissues and peripheral blood. In vitro tumor infiltrating lymphocytes cultures were conducted to test the effect of CD36 blockage.

Results

Accumulation of CD36+CD8+ T cells in tumor tissues was correlated with more advanced stage (p < 0.001), larger tumor size (p < 0.01), and lymph node metastasis (p < 0.0001) in NSCLC. Moreover, high infiltration of CD36+CD8+ T cells indicated poor prognosis in terms of both overall survival (OS) and recurrence-free survival (RFS) and inferior chemotherapy response. CD36+CD8+ T cells showed decreased GZMB (p < 0.0001) and IFN-γ (p < 0.001) with elevated PD-1 (p < 0.0001) and TIGIT (p < 0.0001). Analysis of tumor-infiltrating immune cell landscape revealed a positive correlation between CD36+CD8+ T cells and Tregs (p < 0.01) and M2-polarized macrophages (p < 0.01) but a negative correlation with Th1 (p < 0.05). Notably, inhibition of CD36 partially restored the cytotoxic function of CD8+ T cells by producing more GZMB and IFN-γ.

Conclusion

CD36+CD8+ T cells exhibit impaired immune function and high infiltration of CD36+CD8+ T cells indicated poor prognosis and inferior chemotherapy response in NSCLC patients. CD36 could be a therapeutic target in combination with chemotherapy in NSCLC patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.CrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.CrossRef
2.
go back to reference Yang HX, Woo KM, Sima CS, Bains MS, Adusumilli PS, Huang J, Finley DJ, Rizk NP, Rusch VW, Jones DR, et al. Long-term survival based on the Surgical Approach to Lobectomy for Clinical Stage I Nonsmall Cell Lung Cancer: comparison of robotic, video-assisted thoracic surgery, and Thoracotomy Lobectomy. Ann Surg. 2017;265(2):431–7.CrossRefPubMed Yang HX, Woo KM, Sima CS, Bains MS, Adusumilli PS, Huang J, Finley DJ, Rizk NP, Rusch VW, Jones DR, et al. Long-term survival based on the Surgical Approach to Lobectomy for Clinical Stage I Nonsmall Cell Lung Cancer: comparison of robotic, video-assisted thoracic surgery, and Thoracotomy Lobectomy. Ann Surg. 2017;265(2):431–7.CrossRefPubMed
3.
go back to reference Arbour KC, Riely GJ. Systemic therapy for locally Advanced and Metastatic Non-Small Cell Lung Cancer: a review. JAMA. 2019;322(8):764–74.CrossRefPubMed Arbour KC, Riely GJ. Systemic therapy for locally Advanced and Metastatic Non-Small Cell Lung Cancer: a review. JAMA. 2019;322(8):764–74.CrossRefPubMed
4.
go back to reference NCCN Guideline for Patients. Early and Locally Advanced Non-Small Cell Lung Cancer NCCN Guideline for Patients. Early and Locally Advanced Non-Small Cell Lung Cancer
5.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. Cancer J Clin. 2019;69(1):7–34.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. Cancer J Clin. 2019;69(1):7–34.CrossRef
6.
go back to reference Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, Kang B, Liu Z, Jin L, Xing R, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med. 2018;24(7):978–85.CrossRefPubMed Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, Kang B, Liu Z, Jin L, Xing R, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med. 2018;24(7):978–85.CrossRefPubMed
7.
go back to reference Lin Z, Gu J, Cui X, Huang L, Li S, Feng J, Liu B, Zhou Y. Deciphering Microenvironment of NSCLC based on CD8 + TIL density and PD-1/PD-L1 expression. J Cancer. 2019;10(1):211–22.CrossRefPubMedPubMedCentral Lin Z, Gu J, Cui X, Huang L, Li S, Feng J, Liu B, Zhou Y. Deciphering Microenvironment of NSCLC based on CD8 + TIL density and PD-1/PD-L1 expression. J Cancer. 2019;10(1):211–22.CrossRefPubMedPubMedCentral
8.
go back to reference Xu S, Chaudhary O, Rodríguez-Morales P, Sun X, Chen D, Zappasodi R, Xu Z, Pinto AFM, Williams A, Schulze I, et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity. 2021;54(7):1561–1577e1567.CrossRefPubMedPubMedCentral Xu S, Chaudhary O, Rodríguez-Morales P, Sun X, Chen D, Zappasodi R, Xu Z, Pinto AFM, Williams A, Schulze I, et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity. 2021;54(7):1561–1577e1567.CrossRefPubMedPubMedCentral
10.
go back to reference Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J, Yi Q. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metabol. 2021;33(5):1001–1012e1005.CrossRef Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J, Yi Q. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metabol. 2021;33(5):1001–1012e1005.CrossRef
11.
go back to reference Subramanian M, Marelli-Berg FM. CD36 pumps fat to defang killer T cells in tumors. Cell Metabol. 2021;33(8):1509–11.CrossRef Subramanian M, Marelli-Berg FM. CD36 pumps fat to defang killer T cells in tumors. Cell Metabol. 2021;33(8):1509–11.CrossRef
12.
go back to reference Yoneyama T, Hatakeyama S, Sutoh Yoneyama M, Yoshiya T, Uemura T, Ishizu T, Suzuki M, Hachinohe S, Ishiyama S, Nonaka M, et al. Tumor vasculature-targeted (10)B delivery by an annexin A1-binding peptide boosts effects of boron neutron capture therapy. BMC Cancer. 2021;21(1):72.CrossRefPubMedPubMedCentral Yoneyama T, Hatakeyama S, Sutoh Yoneyama M, Yoshiya T, Uemura T, Ishizu T, Suzuki M, Hachinohe S, Ishiyama S, Nonaka M, et al. Tumor vasculature-targeted (10)B delivery by an annexin A1-binding peptide boosts effects of boron neutron capture therapy. BMC Cancer. 2021;21(1):72.CrossRefPubMedPubMedCentral
13.
go back to reference Gao J, Zhang LX, Ao YQ, Jin C, Zhang PF, Wang HK, Wang S, Lin M, Jiang JH, Ding JY. Elevated circASCC3 limits antitumor immunity by sponging mir-432-5p to upregulate C5a in non-small cell lung cancer. Cancer Lett. 2022;543:215774.CrossRefPubMed Gao J, Zhang LX, Ao YQ, Jin C, Zhang PF, Wang HK, Wang S, Lin M, Jiang JH, Ding JY. Elevated circASCC3 limits antitumor immunity by sponging mir-432-5p to upregulate C5a in non-small cell lung cancer. Cancer Lett. 2022;543:215774.CrossRefPubMed
14.
go back to reference Ni K, Wang D, Xu H, Mei F, Wu C, Liu Z, Zhou B. miR-21 promotes non-small cell lung cancer cells growth by regulating fatty acid metabolism. Cancer Cell Int. 2019;19:219.CrossRefPubMedPubMedCentral Ni K, Wang D, Xu H, Mei F, Wu C, Liu Z, Zhou B. miR-21 promotes non-small cell lung cancer cells growth by regulating fatty acid metabolism. Cancer Cell Int. 2019;19:219.CrossRefPubMedPubMedCentral
15.
go back to reference Sun S, Yao Y, Huang C, Xu H, Zhao Y, Wang Y, Zhu Y, Miao Y, Feng X, Gao X, et al. CD36 regulates LPS-induced acute lung injury by promoting macrophages M1 polarization. Cell Immunol. 2022;372:104475.CrossRefPubMed Sun S, Yao Y, Huang C, Xu H, Zhao Y, Wang Y, Zhu Y, Miao Y, Feng X, Gao X, et al. CD36 regulates LPS-induced acute lung injury by promoting macrophages M1 polarization. Cell Immunol. 2022;372:104475.CrossRefPubMed
16.
go back to reference Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, Wang Q, Yang M, Kalady MF, Qian J, et al. Cholesterol induces CD8(+) T cell exhaustion in the Tumor Microenvironment. Cell Metabol. 2019;30(1):143–156e145.CrossRef Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, Wang Q, Yang M, Kalady MF, Qian J, et al. Cholesterol induces CD8(+) T cell exhaustion in the Tumor Microenvironment. Cell Metabol. 2019;30(1):143–156e145.CrossRef
17.
go back to reference Manzo T, Prentice BM, Anderson KG, Raman A, Schalck A, Codreanu GS, Nava Lauson CB, Tiberti S, Raimondi A, Jones MA et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8 + T cells.The Journal of experimental medicine2020, 217(8). Manzo T, Prentice BM, Anderson KG, Raman A, Schalck A, Codreanu GS, Nava Lauson CB, Tiberti S, Raimondi A, Jones MA et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8 + T cells.The Journal of experimental medicine2020, 217(8).
19.
go back to reference Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, Xu D. Redefining Tumor-Associated macrophage subpopulations and functions in the Tumor Microenvironment. Front Immunol. 2020;11:1731.CrossRefPubMedPubMedCentral Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, Xu D. Redefining Tumor-Associated macrophage subpopulations and functions in the Tumor Microenvironment. Front Immunol. 2020;11:1731.CrossRefPubMedPubMedCentral
20.
go back to reference Liu C, Chikina M, Deshpande R, Menk AV, Wang T, Tabib T, Brunazzi EA, Vignali KM, Sun M, Stolz DB, et al. Treg cells promote the SREBP1-Dependent metabolic fitness of Tumor-Promoting macrophages via repression of CD8(+) T cell-derived Interferon-γ. Immunity. 2019;51(2):381–397e386.CrossRefPubMedPubMedCentral Liu C, Chikina M, Deshpande R, Menk AV, Wang T, Tabib T, Brunazzi EA, Vignali KM, Sun M, Stolz DB, et al. Treg cells promote the SREBP1-Dependent metabolic fitness of Tumor-Promoting macrophages via repression of CD8(+) T cell-derived Interferon-γ. Immunity. 2019;51(2):381–397e386.CrossRefPubMedPubMedCentral
21.
go back to reference Mori M, Ohtani H, Naito Y, Sagawa M, Sato M, Fujimura S, Nagura H. Infiltration of CD8 + T cells in non-small cell lung cancer is associated with dedifferentiation of cancer cells, but not with prognosis. Tohoku J Exp Med. 2000;191(2):113–8.CrossRefPubMed Mori M, Ohtani H, Naito Y, Sagawa M, Sato M, Fujimura S, Nagura H. Infiltration of CD8 + T cells in non-small cell lung cancer is associated with dedifferentiation of cancer cells, but not with prognosis. Tohoku J Exp Med. 2000;191(2):113–8.CrossRefPubMed
22.
go back to reference Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Sci (New York NY). 2006;313(5795):1960–4.CrossRef Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Sci (New York NY). 2006;313(5795):1960–4.CrossRef
23.
go back to reference Mohamed E, Al-Khami AA, Rodriguez PC. The cellular metabolic landscape in the tumor milieu regulates the activity of myeloid infiltrates. Cell Mol Immunol. 2018;15(5):421–7.CrossRefPubMedPubMedCentral Mohamed E, Al-Khami AA, Rodriguez PC. The cellular metabolic landscape in the tumor milieu regulates the activity of myeloid infiltrates. Cell Mol Immunol. 2018;15(5):421–7.CrossRefPubMedPubMedCentral
24.
go back to reference Xia L, Liu Y, Wang Y. PD-1/PD-L1 blockade therapy in Advanced Non-Small-Cell Lung Cancer: current status and future directions. Oncologist. 2019;24(Suppl 1):31–s41.CrossRef Xia L, Liu Y, Wang Y. PD-1/PD-L1 blockade therapy in Advanced Non-Small-Cell Lung Cancer: current status and future directions. Oncologist. 2019;24(Suppl 1):31–s41.CrossRef
25.
go back to reference Rodak O, Peris-Díaz MD, Olbromski M, Podhorska-Okołów M, Dzięgiel P. Current Landscape of Non-Small Cell Lung Cancer: Epidemiology, Histological Classification, Targeted Therapies, and Immunotherapy. Cancers (Basel) 2021, 13(18). Rodak O, Peris-Díaz MD, Olbromski M, Podhorska-Okołów M, Dzięgiel P. Current Landscape of Non-Small Cell Lung Cancer: Epidemiology, Histological Classification, Targeted Therapies, and Immunotherapy. Cancers (Basel) 2021, 13(18).
26.
go back to reference Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.CrossRefPubMedPubMedCentral Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.CrossRefPubMedPubMedCentral
27.
go back to reference Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627–39.CrossRefPubMedPubMedCentral Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627–39.CrossRefPubMedPubMedCentral
28.
go back to reference Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, Huemer F, Losonczy G, Johnson ML, Nishio M, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell Lung Cancer. N Engl J Med. 2018;379(23):2220–9.CrossRefPubMed Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, Huemer F, Losonczy G, Johnson ML, Nishio M, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell Lung Cancer. N Engl J Med. 2018;379(23):2220–9.CrossRefPubMed
29.
go back to reference Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet (London England). 2017;389(10066):255–65.CrossRefPubMed Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet (London England). 2017;389(10066):255–65.CrossRefPubMed
30.
go back to reference Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4.CrossRefPubMedPubMedCentral Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–4.CrossRefPubMedPubMedCentral
31.
go back to reference Chaft JE, Shyr Y, Sepesi B, Forde PM. Preoperative and postoperative systemic therapy for operable non-small-cell Lung Cancer. J Clin oncology: official J Am Soc Clin Oncol. 2022;40(6):546–55.CrossRef Chaft JE, Shyr Y, Sepesi B, Forde PM. Preoperative and postoperative systemic therapy for operable non-small-cell Lung Cancer. J Clin oncology: official J Am Soc Clin Oncol. 2022;40(6):546–55.CrossRef
Metadata
Title
Tumor-infiltrating CD36+CD8+T cells determine exhausted tumor microenvironment and correlate with inferior response to chemotherapy in non-small cell lung cancer
Authors
Yong-Qiang Ao
Jian Gao
Ling-Xian Zhang
Jie Deng
Shuai Wang
Miao Lin
Hai-Kun Wang
Jian-Yong Ding
Jia-Hao Jiang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-10836-z

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine