Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Colorectal Cancer | Research

SLC27A2 mediates FAO in colorectal cancer through nongenic crosstalk regulation of the PPARs pathway

Authors: Kun Shang, Nina Ma, Juanjuan Che, Huihui Li, Jiexuan Hu, Haolin Sun, Bangwei Cao

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Peroxisome proliferator activated receptors (PPARs) are a nuclear hormone receptors superfamily that is closely related to fatty acid (FA) metabolism and tumor progression. Solute carrier family 27 member 2 (SLC27A2) is important for FA transportation and metabolism and is related to cancer progression. This study aims to explore the mechanisms of how PPARs and SLC27A2 regulate FA metabolism in colorectal cancer (CRC) and find new strategies for CRC treatment.

Methods

Biological information analysis was applied to detect the expression and the correlation of PPARs and SLC27A2 in CRC. The protein–protein interaction (PPI) interaction networks were explored by using the STRING database. Uptake experiments and immunofluorescence staining were used to analyse the function and number of peroxisomes and colocalization of FA with peroxisomes, respectively. Western blotting and qRT‒PCR were performed to explore the mechanisms.

Results

SLC27A2 was overexpressed in CRC. PPARs had different expression levels, and PPARG was significantly highly expressed in CRC. SLC27A2 was correlated with PPARs in CRC. Both SLC27A2 and PPARs were closely related to fatty acid oxidation (FAO)‒related genes. SLC27A2 affected the activity of ATP Binding Cassette Subfamily D Member 3 (ABCD3), also named PMP70, the most abundant peroxisomal membrane protein. We found that the ratios of p-Erk/Erk and p-GSK3β/GSK3β were elevated through nongenic crosstalk regulation of the PPARs pathway.

Conclusions

SLC27A2 mediates FA uptake and beta-oxidation through nongenic crosstalk regulation of the PPARs pathway in CRC. Targeting SLC27A2/FATP2 or PPARs may provide new insights for antitumour strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
2.
3.
go back to reference Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80.CrossRefPubMed Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80.CrossRefPubMed
4.
go back to reference Guler I, Askan G, Klostergaard J, Sahin IH. Precision medicine for metastatic colorectal cancer: an evolving era. Expert Rev Gastroenterol Hepatol. 2019;13(10):919–31.CrossRefPubMed Guler I, Askan G, Klostergaard J, Sahin IH. Precision medicine for metastatic colorectal cancer: an evolving era. Expert Rev Gastroenterol Hepatol. 2019;13(10):919–31.CrossRefPubMed
6.
go back to reference Chen J, Zhu H, Yin Y, Jia S, Luo X. Colorectal cancer: Metabolic interactions reshape the tumor microenvironment. Biochim Biophys Acta Rev Cancer. 2022;1877(5): 188797.CrossRefPubMed Chen J, Zhu H, Yin Y, Jia S, Luo X. Colorectal cancer: Metabolic interactions reshape the tumor microenvironment. Biochim Biophys Acta Rev Cancer. 2022;1877(5): 188797.CrossRefPubMed
7.
go back to reference Salita T, Rustam YH, Mouradov D, Sieber OM, Reid GE. Reprogrammed lipid metabolism and the lipid-associated hallmarks of colorectal cancer. Cancers (Basel). 2022;14(15):3714.CrossRefPubMed Salita T, Rustam YH, Mouradov D, Sieber OM, Reid GE. Reprogrammed lipid metabolism and the lipid-associated hallmarks of colorectal cancer. Cancers (Basel). 2022;14(15):3714.CrossRefPubMed
8.
go back to reference Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22.CrossRefPubMed Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22.CrossRefPubMed
10.
go back to reference Lee H, Woo SM, Jang H, Kang M, Kim SY. Cancer depends on fatty acids for ATP production: A possible link between cancer and obesity. Semin Cancer Biol. 2022;86:347.CrossRefPubMed Lee H, Woo SM, Jang H, Kang M, Kim SY. Cancer depends on fatty acids for ATP production: A possible link between cancer and obesity. Semin Cancer Biol. 2022;86:347.CrossRefPubMed
12.
go back to reference Wang R, Li J, Zhou X, Mao Y, Wang W, Gao S, Wang W, Gao Y, Chen K, Yu S, et al. Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors. Genome Med. 2022;14(1):93.CrossRefPubMedPubMedCentral Wang R, Li J, Zhou X, Mao Y, Wang W, Gao S, Wang W, Gao Y, Chen K, Yu S, et al. Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors. Genome Med. 2022;14(1):93.CrossRefPubMedPubMedCentral
13.
go back to reference Mana MD, Hussey AM, Tzouanas CN, Imada S, Barrera Millan Y, Bahceci D, Saiz DR, Webb AT, Lewis CA, Carmeliet P, et al. High-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity. Cell Rep. 2021;35(10): 109212.CrossRefPubMedPubMedCentral Mana MD, Hussey AM, Tzouanas CN, Imada S, Barrera Millan Y, Bahceci D, Saiz DR, Webb AT, Lewis CA, Carmeliet P, et al. High-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity. Cell Rep. 2021;35(10): 109212.CrossRefPubMedPubMedCentral
14.
16.
go back to reference Perez VM, Gabell J, Behrens M, Wase N, DiRusso CC, Black PN. Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPARalpha-regulated genes. J Biol Chem. 2020;295(17):5737–50.CrossRefPubMedPubMedCentral Perez VM, Gabell J, Behrens M, Wase N, DiRusso CC, Black PN. Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPARalpha-regulated genes. J Biol Chem. 2020;295(17):5737–50.CrossRefPubMedPubMedCentral
17.
go back to reference Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug Z, Basu S, Wang F, et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 2019;569(7754):73–8.CrossRefPubMedPubMedCentral Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug Z, Basu S, Wang F, et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 2019;569(7754):73–8.CrossRefPubMedPubMedCentral
18.
go back to reference Mun J, Kim S, Yoon HG, You Y, Kim OK, Choi KC, Lee YH, Lee J, Park J, Jun W. Water extract of curcuma longa L. Ameliorates non-alcoholic fatty liver disease. Nutrients. 2019;11(10):2536.CrossRefPubMedPubMedCentral Mun J, Kim S, Yoon HG, You Y, Kim OK, Choi KC, Lee YH, Lee J, Park J, Jun W. Water extract of curcuma longa L. Ameliorates non-alcoholic fatty liver disease. Nutrients. 2019;11(10):2536.CrossRefPubMedPubMedCentral
19.
go back to reference Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.CrossRefPubMedPubMedCentral Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.CrossRefPubMedPubMedCentral
20.
go back to reference Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.CrossRefPubMed Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.CrossRefPubMed
21.
go back to reference Falcon A, Doege H, Fluitt A, Tsang B, Watson N, Kay MA, Stahl A. FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am J Physiol Endocrinol Metab. 2010;299(3):E384-393.CrossRefPubMedPubMedCentral Falcon A, Doege H, Fluitt A, Tsang B, Watson N, Kay MA, Stahl A. FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am J Physiol Endocrinol Metab. 2010;299(3):E384-393.CrossRefPubMedPubMedCentral
23.
go back to reference Du G, Xiong L, Li X, Zhuo Z, Zhuang X, Yu Z, Wu L, Xiao D, Liu Z, Jie M, et al. Peroxisome elevation induces stem cell differentiation and intestinal epithelial repair. Dev Cell. 2020;53(2):169-184.e111.CrossRefPubMed Du G, Xiong L, Li X, Zhuo Z, Zhuang X, Yu Z, Wu L, Xiao D, Liu Z, Jie M, et al. Peroxisome elevation induces stem cell differentiation and intestinal epithelial repair. Dev Cell. 2020;53(2):169-184.e111.CrossRefPubMed
24.
go back to reference Sha Y, Wu J, Paul B, Zhao Y, Mathews P, Li Z, Norris J, Wang E, McDonnell DP, Kang Y. PPAR agonists attenuate lenalidomide’s anti-myeloma activity in vitro and in vivo. Cancer Lett. 2022;545:215832.CrossRefPubMed Sha Y, Wu J, Paul B, Zhao Y, Mathews P, Li Z, Norris J, Wang E, McDonnell DP, Kang Y. PPAR agonists attenuate lenalidomide’s anti-myeloma activity in vitro and in vivo. Cancer Lett. 2022;545:215832.CrossRefPubMed
25.
go back to reference Sertznig P, Seifert M, Tilgen W, Reichrath J. Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. J Cell Physiol. 2007;212(1):1–12.CrossRefPubMed Sertznig P, Seifert M, Tilgen W, Reichrath J. Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. J Cell Physiol. 2007;212(1):1–12.CrossRefPubMed
26.
go back to reference Wang D, Fu L, Wei J, Xiong Y, DuBois RN. PPARdelta mediates the effect of dietary fat in promoting colorectal cancer metastasis. Cancer Res. 2019;79(17):4480–90.CrossRefPubMedPubMedCentral Wang D, Fu L, Wei J, Xiong Y, DuBois RN. PPARdelta mediates the effect of dietary fat in promoting colorectal cancer metastasis. Cancer Res. 2019;79(17):4480–90.CrossRefPubMedPubMedCentral
28.
go back to reference Chen L, Vasoya RP, Toke NH, Parthasarathy A, Luo S, Chiles E, Flores J, Gao N, Bonder EM, Su X, et al. HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology. 2020;158(4):985-999 e989.CrossRefPubMed Chen L, Vasoya RP, Toke NH, Parthasarathy A, Luo S, Chiles E, Flores J, Gao N, Bonder EM, Su X, et al. HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology. 2020;158(4):985-999 e989.CrossRefPubMed
29.
go back to reference Yang Z, Wu G, Zhang X, Gao J, Meng C, Liu Y, Wei Q, Sun L, Wei P, Bai Z, et al. Current progress and future perspectives of neoadjuvant anti-PD-1/PD-L1 therapy for colorectal cancer. Front Immunol. 2022;13:1001444.CrossRefPubMedPubMedCentral Yang Z, Wu G, Zhang X, Gao J, Meng C, Liu Y, Wei Q, Sun L, Wei P, Bai Z, et al. Current progress and future perspectives of neoadjuvant anti-PD-1/PD-L1 therapy for colorectal cancer. Front Immunol. 2022;13:1001444.CrossRefPubMedPubMedCentral
30.
go back to reference Gutting T, Hauber V, Pahl J, Klapproth K, Wu W, Dobrota I, Herweck F, Reichling J, Helm L, Schroeder T, et al. PPARgamma induces PD-L1 expression in MSS+ colorectal cancer cells. Oncoimmunology. 2021;10(1):1906500.CrossRefPubMedPubMedCentral Gutting T, Hauber V, Pahl J, Klapproth K, Wu W, Dobrota I, Herweck F, Reichling J, Helm L, Schroeder T, et al. PPARgamma induces PD-L1 expression in MSS+ colorectal cancer cells. Oncoimmunology. 2021;10(1):1906500.CrossRefPubMedPubMedCentral
31.
go back to reference Colas C, Laine E. Targeting solute carrier transporters through functional mapping. Trends Pharmacol Sci. 2021;42(1):3–6.CrossRefPubMed Colas C, Laine E. Targeting solute carrier transporters through functional mapping. Trends Pharmacol Sci. 2021;42(1):3–6.CrossRefPubMed
33.
go back to reference Qiu P, Wang H, Zhang M, Zhang M, Peng R, Zhao Q, Liu J. FATP2-targeted therapies - A role beyond fatty liver disease. Pharmacol Res. 2020;161:105228.CrossRefPubMed Qiu P, Wang H, Zhang M, Zhang M, Peng R, Zhao Q, Liu J. FATP2-targeted therapies - A role beyond fatty liver disease. Pharmacol Res. 2020;161:105228.CrossRefPubMed
34.
go back to reference Chen Y, Yan Q, Lv M, Song K, Dai Y, Huang Y, Zhang L, Zhang C, Gao H. Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis. 2020;11(11):994.CrossRefPubMedPubMedCentral Chen Y, Yan Q, Lv M, Song K, Dai Y, Huang Y, Zhang L, Zhang C, Gao H. Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis. 2020;11(11):994.CrossRefPubMedPubMedCentral
36.
go back to reference Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA: The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol. 2022;33(1):70-86. Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA: The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol. 2022;33(1):70-86.
37.
go back to reference Alicea GM, Rebecca VW, Goldman AR, Fane ME, Douglass SM, Behera R, Webster MR, Kugel CH 3rd, Ecker BL, Caino MC, et al. Changes in aged fibroblast lipid metabolism induce age-dependent melanoma cell resistance to targeted therapy via the fatty acid transporter FATP2. Cancer Discov. 2020;10(9):1282–95.CrossRefPubMedPubMedCentral Alicea GM, Rebecca VW, Goldman AR, Fane ME, Douglass SM, Behera R, Webster MR, Kugel CH 3rd, Ecker BL, Caino MC, et al. Changes in aged fibroblast lipid metabolism induce age-dependent melanoma cell resistance to targeted therapy via the fatty acid transporter FATP2. Cancer Discov. 2020;10(9):1282–95.CrossRefPubMedPubMedCentral
40.
go back to reference Adeshakin AO, Liu W, Adeshakin FO, Afolabi LO, Zhang M, Zhang G, Wang L, Li Z, Lin L, Cao Q, et al. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell Immunol. 2021;362:104286.CrossRefPubMed Adeshakin AO, Liu W, Adeshakin FO, Afolabi LO, Zhang M, Zhang G, Wang L, Li Z, Lin L, Cao Q, et al. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell Immunol. 2021;362:104286.CrossRefPubMed
41.
go back to reference Dana N, Ferns GA, Nedaeinia R, Haghjooy Javanmard S. Leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors alpha and gamma. Clin Transl Oncol. 2023;25(3):601-10. Dana N, Ferns GA, Nedaeinia R, Haghjooy Javanmard S. Leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors alpha and gamma. Clin Transl Oncol. 2023;25(3):601-10.
Metadata
Title
SLC27A2 mediates FAO in colorectal cancer through nongenic crosstalk regulation of the PPARs pathway
Authors
Kun Shang
Nina Ma
Juanjuan Che
Huihui Li
Jiexuan Hu
Haolin Sun
Bangwei Cao
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-10816-3

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine