Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Glioblastoma | Research

Characteristics of vasculogenic mimicry and tumour to endothelial transdifferentiation in human glioblastoma: a systematic review

Authors: Kelsey Maddison, Nikola A. Bowden, Moira C. Graves, Paul A. Tooney

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Glioblastoma, the most common primary malignant brain tumour in adults, is a highly vascular tumour characterised by abnormal angiogenesis. Additional mechanisms of tumour vascularisation have also been reported in glioblastoma, including the formation of tumour cell-derived vessels by vasculogenic mimicry (VM) or the transdifferentiation of tumour cells to endothelial cells. VM and endothelial transdifferentiation have frequently been reported as distinct processes, however, the use of both terms to describe a single process of vascularisation also occurs. Some overlapping characteristics have also been reported when identifying each process. We therefore aimed to determine the markers consistently attributed to VM and endothelial transdifferentiation in the glioblastoma literature.

Methods

Ovid MEDLINE and Ovid Embase were searched for studies published between January 1999 and July 2021 that assessed VM or tumour to endothelial transdifferentiation in human glioblastoma. The online systematic review tool Covidence was used for screening and data extraction. Extracted data included type of tumour-derived vasculature reported, methods and techniques used, and markers investigated. Studies were grouped based on type of vasculature reported for further assessment.

Results

One hundred and thirteen of the 419 unique records identified were included for analysis. VM was reported in 64/113 studies, while tumour to endothelial transdifferentiation was reported in 16/113 studies. The remaining studies used both terms to describe a single process, did not define the process that occurred, or concluded that neither VM nor endothelial transdifferentiation occurred. Absence of CD34 and/or CD31 in vascular structures was the most common indicator of VM, while expression of CD34 and/or CD31, in addition to various other endothelial, stem cell or tumour cell markers, indicated tumour to endothelial transdifferentiation.

Conclusion

Cells derived from tumour to endothelial transdifferentiation express typical endothelial markers including CD34 and CD31, while tumour cells contributing to VM lack CD34 and CD31 expression. Additional tumour markers are required to identify transdifferentiation in glioblastoma tissue, and this process requires further characterisation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chung AS, Lee J, Ferrara N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 2010;10:505–14.PubMedCrossRef Chung AS, Lee J, Ferrara N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 2010;10:505–14.PubMedCrossRef
2.
go back to reference Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10:417–27.PubMedCrossRef Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10:417–27.PubMedCrossRef
3.
go back to reference Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LMG, Pe’er J, et al. Vascular Channel formation by human melanoma cells in vivo and in Vitro: Vasculogenic Mimicry. Am J Pathol. 1999;155:739–52.PubMedPubMedCentralCrossRef Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LMG, Pe’er J, et al. Vascular Channel formation by human melanoma cells in vivo and in Vitro: Vasculogenic Mimicry. Am J Pathol. 1999;155:739–52.PubMedPubMedCentralCrossRef
4.
go back to reference Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438:937–45.PubMedCrossRef Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438:937–45.PubMedCrossRef
5.
go back to reference Hendrix MJC, Seftor EA, Meltzer PS, Gardner LMG, Hess AR, Kirschmann DA, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci. 2001;98:8018–23.PubMedPubMedCentralCrossRef Hendrix MJC, Seftor EA, Meltzer PS, Gardner LMG, Hess AR, Kirschmann DA, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci. 2001;98:8018–23.PubMedPubMedCentralCrossRef
6.
go back to reference Hess AR, Margaryan NV, Seftor EA, Hendrix MJC. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the eph receptors. Dev Dyn. 2007;236:3283–96.PubMedCrossRef Hess AR, Margaryan NV, Seftor EA, Hendrix MJC. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the eph receptors. Dev Dyn. 2007;236:3283–96.PubMedCrossRef
7.
go back to reference Seftor REB, Seftor EA, Koshikawa N, Meltzer PS, Gardner LMG, Bilban M, et al. Cooperative interactions of laminin 5 γ2 chain, Matrix Metalloproteinase-2, and membrane Type-1-Matrix/Metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res. 2001;61:6322–7.PubMed Seftor REB, Seftor EA, Koshikawa N, Meltzer PS, Gardner LMG, Bilban M, et al. Cooperative interactions of laminin 5 γ2 chain, Matrix Metalloproteinase-2, and membrane Type-1-Matrix/Metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res. 2001;61:6322–7.PubMed
8.
go back to reference Hardy KM, Kirschmann DA, Seftor EA, Margaryan NV, Postovit L-M, Strizzi L, et al. Regulation of the embryonic morphogen nodal by Notch4 facilitates Manifestation of the aggressive Melanoma phenotype. Cancer Res. 2010;70:10340–50.PubMedPubMedCentralCrossRef Hardy KM, Kirschmann DA, Seftor EA, Margaryan NV, Postovit L-M, Strizzi L, et al. Regulation of the embryonic morphogen nodal by Notch4 facilitates Manifestation of the aggressive Melanoma phenotype. Cancer Res. 2010;70:10340–50.PubMedPubMedCentralCrossRef
9.
go back to reference Topczewska JM, Postovit L-M, Margaryan NV, Sam A, Hess AR, Wheaton WW, et al. Embryonic and tumorigenic pathways converge via nodal signaling: role in melanoma aggressiveness. Nat Med. 2006;12:925–32.PubMedCrossRef Topczewska JM, Postovit L-M, Margaryan NV, Sam A, Hess AR, Wheaton WW, et al. Embryonic and tumorigenic pathways converge via nodal signaling: role in melanoma aggressiveness. Nat Med. 2006;12:925–32.PubMedCrossRef
10.
go back to reference Hess AR, Seftor EA, Gruman LM, Kinch MS, Seftor REB, Hendrix MJC. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry. Cancer Biol Ther. 2006;5:228–33.PubMedCrossRef Hess AR, Seftor EA, Gruman LM, Kinch MS, Seftor REB, Hendrix MJC. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry. Cancer Biol Ther. 2006;5:228–33.PubMedCrossRef
11.
go back to reference Hess AR, Seftor EA, Gardner LMG, Carles-Kinch K, Schneider GB, Seftor REB, et al. Molecular regulation of Tumor Cell Vasculogenic Mimicry by Tyrosine Phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res. 2001;61:3250–5.PubMed Hess AR, Seftor EA, Gardner LMG, Carles-Kinch K, Schneider GB, Seftor REB, et al. Molecular regulation of Tumor Cell Vasculogenic Mimicry by Tyrosine Phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res. 2001;61:3250–5.PubMed
12.
go back to reference Hess AR, Seftor EA, Seftor REB, Hendrix MJC. Phosphoinositide 3-Kinase regulates membrane type 1-Matrix metalloproteinase (MMP) and MMP-2 activity during Melanoma Cell Vasculogenic Mimicry. Cancer Res. 2003;63:4757–62.PubMed Hess AR, Seftor EA, Seftor REB, Hendrix MJC. Phosphoinositide 3-Kinase regulates membrane type 1-Matrix metalloproteinase (MMP) and MMP-2 activity during Melanoma Cell Vasculogenic Mimicry. Cancer Res. 2003;63:4757–62.PubMed
13.
go back to reference Sun B, Zhang D, Zhang S, Zhang W, Guo H, Zhao X. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett. 2007;249:188–97.PubMedCrossRef Sun B, Zhang D, Zhang S, Zhang W, Guo H, Zhao X. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett. 2007;249:188–97.PubMedCrossRef
14.
go back to reference Comito G, Calvani M, Giannoni E, Bianchini F, Calorini L, Torre E, et al. HIF-1α stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med. 2011;51:893–904.PubMedCrossRef Comito G, Calvani M, Giannoni E, Bianchini F, Calorini L, Torre E, et al. HIF-1α stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med. 2011;51:893–904.PubMedCrossRef
15.
go back to reference Yue W-Y, Chen Z-P. Does Vasculogenic Mimicry Exist in Astrocytoma? J Histochem Cytochem. 2005;53:997–1002.PubMedCrossRef Yue W-Y, Chen Z-P. Does Vasculogenic Mimicry Exist in Astrocytoma? J Histochem Cytochem. 2005;53:997–1002.PubMedCrossRef
16.
go back to reference El Hallani S, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, et al. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain. 2010;133:973–82.PubMedPubMedCentralCrossRef El Hallani S, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, et al. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain. 2010;133:973–82.PubMedPubMedCentralCrossRef
17.
go back to reference Liu X, Zhang Q, Mu Y, Zhang X, Sai K, Pang JC-S, et al. Clinical significance of vasculogenic mimicry in human gliomas. J Neurooncol. 2011;105:173–9.PubMedPubMedCentralCrossRef Liu X, Zhang Q, Mu Y, Zhang X, Sai K, Pang JC-S, et al. Clinical significance of vasculogenic mimicry in human gliomas. J Neurooncol. 2011;105:173–9.PubMedPubMedCentralCrossRef
18.
go back to reference Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro-Oncol. 2021;23:1231–51.PubMedPubMedCentralCrossRef Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro-Oncol. 2021;23:1231–51.PubMedPubMedCentralCrossRef
19.
go back to reference Australian Institute of Health and Welfare. Brain and other central nervous system cancers. Canberra: AIHW; 2017. Australian Institute of Health and Welfare. Brain and other central nervous system cancers. Canberra: AIHW; 2017.
20.
go back to reference Stupp R, Weller M, Belanger K, Bogdahn U, Ludwin SK, Lacombe D, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med. 2005;352:987–96.PubMedCrossRef Stupp R, Weller M, Belanger K, Bogdahn U, Ludwin SK, Lacombe D, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med. 2005;352:987–96.PubMedCrossRef
21.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO classification of Tumours of the Central Nervous System. Revised 4th. Lyon: IARC; 2016. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO classification of Tumours of the Central Nervous System. Revised 4th. Lyon: IARC; 2016.
22.
go back to reference Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in Combination with Irinotecan in Recurrent Glioblastoma. J Clin Oncol. 2009;27:4733–40.PubMedCrossRef Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in Combination with Irinotecan in Recurrent Glioblastoma. J Clin Oncol. 2009;27:4733–40.PubMedCrossRef
23.
go back to reference Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A Randomized Trial of Bevacizumab for newly diagnosed Glioblastoma. N Engl J Med. 2014;370:699–708.PubMedPubMedCentralCrossRef Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A Randomized Trial of Bevacizumab for newly diagnosed Glioblastoma. N Engl J Med. 2014;370:699–708.PubMedPubMedCentralCrossRef
24.
go back to reference Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N Engl J Med. 2017;377:1954–63.PubMedCrossRef Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N Engl J Med. 2017;377:1954–63.PubMedCrossRef
25.
go back to reference Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus Radiotherapy–Temozolomide for newly diagnosed Glioblastoma. N Engl J Med. 2014;370:709–22.PubMedCrossRef Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus Radiotherapy–Temozolomide for newly diagnosed Glioblastoma. N Engl J Med. 2014;370:709–22.PubMedCrossRef
26.
go back to reference Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468:829–33.PubMedCrossRef Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468:829–33.PubMedCrossRef
27.
go back to reference Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–8.PubMedCrossRef Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–8.PubMedCrossRef
28.
go back to reference Mao X-g, Xue X-y, Wang L, Zhang X, Yan M, Tu Y -y., editors. CDH5 is specifically activated in glioblastoma stemlike cells and contributes to vasculogenic mimicry induced by hypoxia. Neuro-Oncol. 2013;15:865–79. Mao X-g, Xue X-y, Wang L, Zhang X, Yan M, Tu Y -y., editors. CDH5 is specifically activated in glioblastoma stemlike cells and contributes to vasculogenic mimicry induced by hypoxia. Neuro-Oncol. 2013;15:865–79.
29.
go back to reference Porcù E, Maule F, Boso D, Rampazzo E, Barbieri V, Zuccolotto G, et al. BMP9 counteracts the tumorigenic and pro-angiogenic potential of glioblastoma. Cell Death Differ. 2018;25:1808–22.PubMedPubMedCentralCrossRef Porcù E, Maule F, Boso D, Rampazzo E, Barbieri V, Zuccolotto G, et al. BMP9 counteracts the tumorigenic and pro-angiogenic potential of glioblastoma. Cell Death Differ. 2018;25:1808–22.PubMedPubMedCentralCrossRef
30.
go back to reference Scully S, Francescone R, Faibish M, Bentley B, Taylor SL, Oh D, et al. Transdifferentiation of Glioblastoma Stem-Like cells into Mural cells drives vasculogenic mimicry in Glioblastomas. J Neurosci. 2012;32:12950–60.PubMedPubMedCentralCrossRef Scully S, Francescone R, Faibish M, Bentley B, Taylor SL, Oh D, et al. Transdifferentiation of Glioblastoma Stem-Like cells into Mural cells drives vasculogenic mimicry in Glioblastomas. J Neurosci. 2012;32:12950–60.PubMedPubMedCentralCrossRef
31.
go back to reference Shaifer CA, Huang J, Lin PC. Glioblastoma cells incorporate into tumor vasculature and contribute to vascular radioresistance. Int J Cancer. 2010;127:2063–75.PubMedPubMedCentralCrossRef Shaifer CA, Huang J, Lin PC. Glioblastoma cells incorporate into tumor vasculature and contribute to vascular radioresistance. Int J Cancer. 2010;127:2063–75.PubMedPubMedCentralCrossRef
32.
go back to reference Zhu Y, Liu X, Zhao P, Zhao H, Gao W, Wang L. Celastrol Suppresses Glioma Vasculogenic Mimicry Formation and Angiogenesis by Blocking the PI3K/Akt/mTOR Signaling Pathway.Front Pharmacol. 2020;11. Zhu Y, Liu X, Zhao P, Zhao H, Gao W, Wang L. Celastrol Suppresses Glioma Vasculogenic Mimicry Formation and Angiogenesis by Blocking the PI3K/Akt/mTOR Signaling Pathway.Front Pharmacol. 2020;11.
33.
go back to reference Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M. Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene. 2003;22:6557–63.PubMedCrossRef Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M. Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene. 2003;22:6557–63.PubMedCrossRef
34.
go back to reference Bergès R, Tchoghandjian A, Sergé A, Honoré S, Figarella-Branger D, Bachmann F, et al. EB1-dependent long survival of glioblastoma-grafted mice with the oral tubulin-binder BAL101553 is associated with inhibition of tumor angiogenesis. Oncotarget. 2020;11:759–74.PubMedPubMedCentralCrossRef Bergès R, Tchoghandjian A, Sergé A, Honoré S, Figarella-Branger D, Bachmann F, et al. EB1-dependent long survival of glioblastoma-grafted mice with the oral tubulin-binder BAL101553 is associated with inhibition of tumor angiogenesis. Oncotarget. 2020;11:759–74.PubMedPubMedCentralCrossRef
35.
go back to reference Deshors P, Toulas C, Arnauduc F, Malric L, Siegfried A, Nicaise Y, et al. Ionizing radiation induces endothelial transdifferentiation of glioblastoma stem-like cells through the Tie2 signaling pathway. Cell Death Dis. 2019;10:816.PubMedPubMedCentralCrossRef Deshors P, Toulas C, Arnauduc F, Malric L, Siegfried A, Nicaise Y, et al. Ionizing radiation induces endothelial transdifferentiation of glioblastoma stem-like cells through the Tie2 signaling pathway. Cell Death Dis. 2019;10:816.PubMedPubMedCentralCrossRef
36.
go back to reference The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.CrossRef The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.CrossRef
37.
go back to reference Liu Z, Sun B, Qi L, Li H, Gao J, Leng X. Zinc finger E-box binding homeobox 1 promotes vasculogenic mimicry in colorectal cancer through induction of epithelial-to-mesenchymal transition. Cancer Sci. 2012;103:813–20.PubMedPubMedCentralCrossRef Liu Z, Sun B, Qi L, Li H, Gao J, Leng X. Zinc finger E-box binding homeobox 1 promotes vasculogenic mimicry in colorectal cancer through induction of epithelial-to-mesenchymal transition. Cancer Sci. 2012;103:813–20.PubMedPubMedCentralCrossRef
38.
go back to reference Mitra D, Bhattacharyya S, Alam N, Sen S, Mitra S, Mandal S, et al. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast. Breast Cancer Res Treat. 2020;179:359–70.PubMedCrossRef Mitra D, Bhattacharyya S, Alam N, Sen S, Mitra S, Mandal S, et al. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast. Breast Cancer Res Treat. 2020;179:359–70.PubMedCrossRef
40.
go back to reference Williamson SC, Metcalf RL, Trapani F, Mohan S, Antonello J, Abbott B et al. Vasculogenic mimicry in small cell lung cancer.Nat Commun. 2016;7. Williamson SC, Metcalf RL, Trapani F, Mohan S, Antonello J, Abbott B et al. Vasculogenic mimicry in small cell lung cancer.Nat Commun. 2016;7.
41.
go back to reference Wu Y, Du K, Guan W, Wu D, Tang H, Wang N, et al. A novel definition of microvessel density in renal cell carcinoma: angiogenesis plus vasculogenic mimicry. Oncol Lett. 2020;20:1–1. Wu Y, Du K, Guan W, Wu D, Tang H, Wang N, et al. A novel definition of microvessel density in renal cell carcinoma: angiogenesis plus vasculogenic mimicry. Oncol Lett. 2020;20:1–1.
42.
go back to reference Mei X, Chen Y-S, Chen F-R, Xi S-Y, Chen Z-P. Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro-Oncol. 2017;19:1109–18.PubMedPubMedCentralCrossRef Mei X, Chen Y-S, Chen F-R, Xi S-Y, Chen Z-P. Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro-Oncol. 2017;19:1109–18.PubMedPubMedCentralCrossRef
43.
go back to reference Zhao C, Gomez GA, Zhao Y, Yang Y, Cao D, Lu J, et al. ETV2 mediates endothelial transdifferentiation of glioblastoma. Signal Transduct Target Ther. 2018;3:4.PubMedPubMedCentralCrossRef Zhao C, Gomez GA, Zhao Y, Yang Y, Cao D, Lu J, et al. ETV2 mediates endothelial transdifferentiation of glioblastoma. Signal Transduct Target Ther. 2018;3:4.PubMedPubMedCentralCrossRef
44.
go back to reference He H, Niu CS, Li MW. Correlation between glioblastoma stem-like cells and tumor vascularization. Oncol Rep. 2012;27:45–50.PubMed He H, Niu CS, Li MW. Correlation between glioblastoma stem-like cells and tumor vascularization. Oncol Rep. 2012;27:45–50.PubMed
45.
go back to reference Dong J, Zhao Y, Huang Q, Fei X, Diao Y, Shen Y, et al. Glioma Stem/Progenitor cells contribute to Neovascularization via Transdifferentiation. Stem Cell Rev Rep. 2011;7:141–52.PubMedCrossRef Dong J, Zhao Y, Huang Q, Fei X, Diao Y, Shen Y, et al. Glioma Stem/Progenitor cells contribute to Neovascularization via Transdifferentiation. Stem Cell Rev Rep. 2011;7:141–52.PubMedCrossRef
46.
go back to reference Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A Perivascular Niche for Brain Tumor Stem cells. Cancer Cell. 2007;11:69–82.PubMedCrossRef Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A Perivascular Niche for Brain Tumor Stem cells. Cancer Cell. 2007;11:69–82.PubMedCrossRef
47.
go back to reference Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review.Clin Transl Med. 2018;7. Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review.Clin Transl Med. 2018;7.
48.
go back to reference Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci. 2000;97:14720–5.PubMedPubMedCentralCrossRef Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci. 2000;97:14720–5.PubMedPubMedCentralCrossRef
49.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.PubMedCrossRef Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.PubMedCrossRef
50.
go back to reference Akino T, Hida K, Hida Y, Tsuchiya K, Freedman D, Muraki C, et al. Cytogenetic abnormalities of Tumor-Associated endothelial cells in human malignant tumors. Am J Pathol. 2009;175:2657–67.PubMedPubMedCentralCrossRef Akino T, Hida K, Hida Y, Tsuchiya K, Freedman D, Muraki C, et al. Cytogenetic abnormalities of Tumor-Associated endothelial cells in human malignant tumors. Am J Pathol. 2009;175:2657–67.PubMedPubMedCentralCrossRef
51.
go back to reference Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, et al. Tumor-Associated endothelial cells with cytogenetic abnormalities. Cancer Res. 2004;64:8249–55.PubMedCrossRef Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, et al. Tumor-Associated endothelial cells with cytogenetic abnormalities. Cancer Res. 2004;64:8249–55.PubMedCrossRef
52.
go back to reference Kondoh M, Ohga N, Akiyama K, Hida Y, Maishi N, Towfik AM, et al. Hypoxia-Induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the Tumor Microenvironment. PLoS ONE. 2013;8:e80349.PubMedPubMedCentralCrossRef Kondoh M, Ohga N, Akiyama K, Hida Y, Maishi N, Towfik AM, et al. Hypoxia-Induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the Tumor Microenvironment. PLoS ONE. 2013;8:e80349.PubMedPubMedCentralCrossRef
53.
go back to reference Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.PubMedCrossRef Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.PubMedCrossRef
54.
go back to reference Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, et al. Glioma Stem Cell Lines expanded in Adherent Culture have tumor-specific phenotypes and are suitable for Chemical and genetic screens. Cell Stem Cell. 2009;4:568–80.PubMedCrossRef Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, et al. Glioma Stem Cell Lines expanded in Adherent Culture have tumor-specific phenotypes and are suitable for Chemical and genetic screens. Cell Stem Cell. 2009;4:568–80.PubMedCrossRef
55.
go back to reference Haddad AF, Young JS, Amara D, Berger MS, Raleigh DR, Aghi MK, et al. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neuro-Oncol Adv. 2021;3:vdab100.CrossRef Haddad AF, Young JS, Amara D, Berger MS, Raleigh DR, Aghi MK, et al. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neuro-Oncol Adv. 2021;3:vdab100.CrossRef
56.
go back to reference Qiang L, Yang Y, Ma Y-J, Chen F-H, Zhang L-B, Liu W, et al. Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett. 2009;279:13–21.PubMedCrossRef Qiang L, Yang Y, Ma Y-J, Chen F-H, Zhang L-B, Liu W, et al. Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett. 2009;279:13–21.PubMedCrossRef
57.
go back to reference Francescone RA III, Faibish M, Shao R. A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells.J Vis Exp. 2011;:3040. Francescone RA III, Faibish M, Shao R. A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells.J Vis Exp. 2011;:3040.
58.
go back to reference Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol. 1988;107:1589–98.PubMedCrossRef Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol. 1988;107:1589–98.PubMedCrossRef
59.
go back to reference Arnaoutova I, Kleinman HK. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc. 2010;5:628–35.PubMedCrossRef Arnaoutova I, Kleinman HK. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc. 2010;5:628–35.PubMedCrossRef
Metadata
Title
Characteristics of vasculogenic mimicry and tumour to endothelial transdifferentiation in human glioblastoma: a systematic review
Authors
Kelsey Maddison
Nikola A. Bowden
Moira C. Graves
Paul A. Tooney
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-10659-y

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine