Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Research article

Tumor vasculature-targeted 10B delivery by an Annexin A1-binding peptide boosts effects of boron neutron capture therapy

Authors: Tohru Yoneyama, Shingo Hatakeyama, Mihoko Sutoh Yoneyama, Taku Yoshiya, Tsuyoshi Uemura, Takehiro Ishizu, Minoru Suzuki, Shingo Hachinohe, Shintaro Ishiyama, Motohiro Nonaka, Michiko N. Fukuda, Chikara Ohyama

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

p-Boronophenylalanine (10BPA) is a powerful 10B drug used in current clinical trials of BNCT. For BNCT to be successful, a high (500 mg/kg) dose of 10BPA must be administered over a few hours. Here, we report BNCT efficacy after rapid, ultralow-dose administration of either tumor vasculature-specific annexin A1-targeting IFLLWQR (IF7)-conjugated 10BPA or borocaptate sodium (10BSH).

Methods

(1) IF7 conjugates of either 10B drugs intravenously injected into MBT2 bladder tumor-bearing mice and biodistribution of 10B in tumors and normal organs analyzed by prompt gamma-ray analysis. (2) Therapeutic effect of IF7-10B drug-mediated BNCT was assessed by either MBT2 bladder tumor bearing C3H/He mice and YTS-1 tumor bearing nude mice.

Results

Intravenous injection of IF7C conjugates of either 10B drugs into MBT2 bladder tumor-bearing mice promoted rapid 10B accumulation in tumor and suppressed tumor growth. Moreover, multiple treatments at ultralow (10–20 mg/kg) doses of IF7-10B drug-mediated BNCT significantly suppressed tumor growth in a mouse model of human YTS-1 bladder cancer, with increased Anxa1 expression in tumors and infiltration by CD8-positive lymphocytes.

Conclusions

We conclude that IF7 serves as an efficient 10B delivery vehicle by targeting tumor tissues via the tumor vasculature and could serve as a relevant vehicle for BNCT drugs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Coderre JA, Morris GM. The radiation biology of boron neutron capture therapy. Radiat Res. 1999;151(1):1–18.CrossRef Coderre JA, Morris GM. The radiation biology of boron neutron capture therapy. Radiat Res. 1999;151(1):1–18.CrossRef
2.
go back to reference Suzuki M. Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int J Clin Oncol. 2020;25(1):43–50.CrossRef Suzuki M. Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int J Clin Oncol. 2020;25(1):43–50.CrossRef
3.
go back to reference Soloway AH, Hatanaka H, Davis MA. Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. J Med Chem. 1967;10(4):714–7.CrossRef Soloway AH, Hatanaka H, Davis MA. Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. J Med Chem. 1967;10(4):714–7.CrossRef
4.
go back to reference Hatanaka H. A revised boron-neutron capture therapy for malignant brain tumors. II. Interim clinical result with the patients excluding previous treatments. J Neurol. 1975;209(2):81–94.CrossRef Hatanaka H. A revised boron-neutron capture therapy for malignant brain tumors. II. Interim clinical result with the patients excluding previous treatments. J Neurol. 1975;209(2):81–94.CrossRef
5.
go back to reference Mishima Y, Honda C, Ichihashi M, Obara H, Hiratsuka J, Fukuda H, Karashima H, Kobayashi T, Kanda K, Yoshino K. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet. 1989;2(8659):388–9.CrossRef Mishima Y, Honda C, Ichihashi M, Obara H, Hiratsuka J, Fukuda H, Karashima H, Kobayashi T, Kanda K, Yoshino K. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet. 1989;2(8659):388–9.CrossRef
6.
go back to reference Wongthai P, Hagiwara K, Miyoshi Y, Wiriyasermkul P, Wei L, Ohgaki R, Kato I, Hamase K, Nagamori S, Kanai Y. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci. 2015;106(3):279–86.CrossRef Wongthai P, Hagiwara K, Miyoshi Y, Wiriyasermkul P, Wei L, Ohgaki R, Kato I, Hamase K, Nagamori S, Kanai Y. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci. 2015;106(3):279–86.CrossRef
7.
go back to reference Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, Ido T. Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med. 1998;39(2):325–33.PubMed Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, Ido T. Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med. 1998;39(2):325–33.PubMed
8.
go back to reference Iguchi Y, Michiue H, Kitamatsu M, Hayashi Y, Takenaka F, Nishiki T, Matsui H. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model. Biomaterials. 2015;56:10–7.CrossRef Iguchi Y, Michiue H, Kitamatsu M, Hayashi Y, Takenaka F, Nishiki T, Matsui H. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model. Biomaterials. 2015;56:10–7.CrossRef
9.
go back to reference Nomoto T, Inoue Y, Yao Y, Suzuki M, Kanamori K, Takemoto H, Matsui M, Tomoda K, Nishiyama N. Poly(vinyl alcohol) boosting therapeutic potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. Sci Adv. 2020;6(4):eaaz1722.CrossRef Nomoto T, Inoue Y, Yao Y, Suzuki M, Kanamori K, Takemoto H, Matsui M, Tomoda K, Nishiyama N. Poly(vinyl alcohol) boosting therapeutic potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. Sci Adv. 2020;6(4):eaaz1722.CrossRef
10.
go back to reference Yi M, Schnitzer JE. Impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1-null mice. Proc Natl Acad Sci U S A. 2009;106(42):17886–91.CrossRef Yi M, Schnitzer JE. Impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1-null mice. Proc Natl Acad Sci U S A. 2009;106(42):17886–91.CrossRef
11.
go back to reference Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature. 2004;429(6992):629–35.CrossRef Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature. 2004;429(6992):629–35.CrossRef
12.
go back to reference Yamanoi M, Yamanoi K, Fujii C, Fukuda MN, Nakayama J. Annexin A1 expression is correlated with malignant potential of renal cell carcinoma. Int J Urol. 2019;26(2):284–90.CrossRef Yamanoi M, Yamanoi K, Fujii C, Fukuda MN, Nakayama J. Annexin A1 expression is correlated with malignant potential of renal cell carcinoma. Int J Urol. 2019;26(2):284–90.CrossRef
13.
go back to reference Liu A, Huang W, Zeng G, Ma X, Zhou X, Wang Y, Ouyang C, Cheng A. Expression of the Annexin A1 gene is associated with suppression of growth, invasion and metastasis of nasopharyngeal carcinoma. Mol Med Rep. 2014;10(6):3059–67.CrossRef Liu A, Huang W, Zeng G, Ma X, Zhou X, Wang Y, Ouyang C, Cheng A. Expression of the Annexin A1 gene is associated with suppression of growth, invasion and metastasis of nasopharyngeal carcinoma. Mol Med Rep. 2014;10(6):3059–67.CrossRef
14.
go back to reference Allen KL, Cann J, Zhao W, Peterson N, Lazzaro M, Zhong H, Wu H, Dall'Acqua WF, Borrok MJ, Damschroder MM, et al. Upregulation of annexin A1 protein expression in the intratumoral vasculature of human non-small-cell lung carcinoma and rodent tumor models. PLoS One. 2020;15(6):e0234268.CrossRef Allen KL, Cann J, Zhao W, Peterson N, Lazzaro M, Zhong H, Wu H, Dall'Acqua WF, Borrok MJ, Damschroder MM, et al. Upregulation of annexin A1 protein expression in the intratumoral vasculature of human non-small-cell lung carcinoma and rodent tumor models. PLoS One. 2020;15(6):e0234268.CrossRef
15.
go back to reference Hatakeyama S, Sugihara K, Shibata TK, Nakayama J, Akama TO, Tamura N, Wong SM, Bobkov AA, Takano Y, Ohyama C, et al. Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc Natl Acad Sci U S A. 2011;108(49):19587–92.CrossRef Hatakeyama S, Sugihara K, Shibata TK, Nakayama J, Akama TO, Tamura N, Wong SM, Bobkov AA, Takano Y, Ohyama C, et al. Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc Natl Acad Sci U S A. 2011;108(49):19587–92.CrossRef
16.
go back to reference Xiaobo Gu MJ, Pan D, Cai G, Zhang R, Zhou Y, Ding Y, Zhu B, Lin X. Preliminary evaluation of novel 18F-AlF-NOTA-IF7 as a tumor imaging agent. J Radioanal Nucl Chem. 2016;308(3):851–6.CrossRef Xiaobo Gu MJ, Pan D, Cai G, Zhang R, Zhou Y, Ding Y, Zhu B, Lin X. Preliminary evaluation of novel 18F-AlF-NOTA-IF7 as a tumor imaging agent. J Radioanal Nucl Chem. 2016;308(3):851–6.CrossRef
17.
go back to reference Chen F, Xiao Y, Shao K, Zhu B, Jiang M. PET imaging of a novel Anxal-targeted peptide (18) F-Al-NODA-Bn-p-SCN-GGGRDN-IF7 in A431 Cancer mouse models. J Labelled Comp Radiopharm. 2020;63(12):494–501.PubMed Chen F, Xiao Y, Shao K, Zhu B, Jiang M. PET imaging of a novel Anxal-targeted peptide (18) F-Al-NODA-Bn-p-SCN-GGGRDN-IF7 in A431 Cancer mouse models. J Labelled Comp Radiopharm. 2020;63(12):494–501.PubMed
18.
go back to reference Yu DH, Liu YR, Luan X, Liu HJ, Gao YG, Wu H, Fang C, Chen HZ. IF7-conjugated nanoparticles target Annexin 1 of tumor vasculature against P-gp mediated multidrug resistance. Bioconjug Chem. 2015;26(8):1702–12.CrossRef Yu DH, Liu YR, Luan X, Liu HJ, Gao YG, Wu H, Fang C, Chen HZ. IF7-conjugated nanoparticles target Annexin 1 of tumor vasculature against P-gp mediated multidrug resistance. Bioconjug Chem. 2015;26(8):1702–12.CrossRef
19.
go back to reference Hatakeyama S, Shibata TK, Tobisawa Y, Ohyama C, Sugihara K, Fukuda MN. Tumor targeting by a carbohydrate ligand-mimicking peptide. Methods Mol Biol. 2013;1022:369–86.CrossRef Hatakeyama S, Shibata TK, Tobisawa Y, Ohyama C, Sugihara K, Fukuda MN. Tumor targeting by a carbohydrate ligand-mimicking peptide. Methods Mol Biol. 2013;1022:369–86.CrossRef
20.
go back to reference Nonaka M, Suzuki-Anekoji M, Nakayama J, Mabashi-Asazuma H, Jarvis DL, Yeh JC, Yamasaki K, Akama TO, Huang CT, Campos AR, et al. Overcoming the blood-brain barrier by Annexin A1-binding peptide to target brain tumours. Br J Cancer. 2020;123(11):1633–43.CrossRef Nonaka M, Suzuki-Anekoji M, Nakayama J, Mabashi-Asazuma H, Jarvis DL, Yeh JC, Yamasaki K, Akama TO, Huang CT, Campos AR, et al. Overcoming the blood-brain barrier by Annexin A1-binding peptide to target brain tumours. Br J Cancer. 2020;123(11):1633–43.CrossRef
21.
go back to reference Schnitzer JE, Liu J, Oh P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem. 1995;270(24):14399–404.CrossRef Schnitzer JE, Liu J, Oh P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem. 1995;270(24):14399–404.CrossRef
22.
go back to reference Oh P, Borgstrom P, Witkiewicz H, Li Y, Borgstrom BJ, Chrastina A, Iwata K, Zinn KR, Baldwin R, Testa JE, et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol. 2007;25(3):327–37.CrossRef Oh P, Borgstrom P, Witkiewicz H, Li Y, Borgstrom BJ, Chrastina A, Iwata K, Zinn KR, Baldwin R, Testa JE, et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol. 2007;25(3):327–37.CrossRef
23.
go back to reference Kakizaki H, Numasawa K, Suzuki K. Establishment of a new cell line (YTS-1) derived from a human urinary bladder carcinoma and its characteristics. Nihon Hinyokika Gakkai Zasshi. 1986;77(11):1790–5.PubMed Kakizaki H, Numasawa K, Suzuki K. Establishment of a new cell line (YTS-1) derived from a human urinary bladder carcinoma and its characteristics. Nihon Hinyokika Gakkai Zasshi. 1986;77(11):1790–5.PubMed
24.
go back to reference Sutoh Yoneyama M, Tobisawa Y, Hatakeyama S, Sato M, Tone K, Tatara Y, Kakizaki I, Funyu T, Fukuda M, Hoshi S, et al. A mechanism for evasion of CTL immunity by altered O-glycosylation of HLA class I. J Biochem. 2017;161(6):479–92.PubMed Sutoh Yoneyama M, Tobisawa Y, Hatakeyama S, Sato M, Tone K, Tatara Y, Kakizaki I, Funyu T, Fukuda M, Hoshi S, et al. A mechanism for evasion of CTL immunity by altered O-glycosylation of HLA class I. J Biochem. 2017;161(6):479–92.PubMed
25.
go back to reference Dowsett M, Nielsen TA, A'Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T, et al. Assessment of Ki67 in breast cancer: recommendations from the international Ki67 in breast Cancer working group. J Natl Cancer Inst. 2011;103(22):1656–64.CrossRef Dowsett M, Nielsen TA, A'Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T, et al. Assessment of Ki67 in breast cancer: recommendations from the international Ki67 in breast Cancer working group. J Natl Cancer Inst. 2011;103(22):1656–64.CrossRef
26.
go back to reference Otvos L Jr. Peptide-based drug design: here and now. Methods Mol Biol. 2008;494:1–8.CrossRef Otvos L Jr. Peptide-based drug design: here and now. Methods Mol Biol. 2008;494:1–8.CrossRef
27.
go back to reference Landon LA, Zou J, Deutscher SL. Is phage display technology on target for developing peptide-based cancer drugs? Curr Drug Discov Technol. 2004;1(2):113–32.CrossRef Landon LA, Zou J, Deutscher SL. Is phage display technology on target for developing peptide-based cancer drugs? Curr Drug Discov Technol. 2004;1(2):113–32.CrossRef
28.
go back to reference Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82(2):331–71.CrossRef Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82(2):331–71.CrossRef
29.
go back to reference Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.CrossRef Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.CrossRef
30.
go back to reference Kennedy JD, Pierce CW, Lake JP. Extrathymic T cell maturation. Phenotypic analysis of T cell subsets in nude mice as a function of age. J Immunol. 1992;148(6):1620–9.PubMed Kennedy JD, Pierce CW, Lake JP. Extrathymic T cell maturation. Phenotypic analysis of T cell subsets in nude mice as a function of age. J Immunol. 1992;148(6):1620–9.PubMed
31.
go back to reference Boudhraa Z, Bouchon B, Viallard C, D'Incan M, Degoul F. Annexin A1 localization and its relevance to cancer. Clin Sci (Lond). 2016;130(4):205–20.CrossRef Boudhraa Z, Bouchon B, Viallard C, D'Incan M, Degoul F. Annexin A1 localization and its relevance to cancer. Clin Sci (Lond). 2016;130(4):205–20.CrossRef
32.
go back to reference Moraes LA, Ampomah PB, Lim LHK. Annexin A1 in inflammation and breast cancer: a new axis in the tumor microenvironment. Cell Adhes Migr. 2018;12(5):417–23. Moraes LA, Ampomah PB, Lim LHK. Annexin A1 in inflammation and breast cancer: a new axis in the tumor microenvironment. Cell Adhes Migr. 2018;12(5):417–23.
33.
go back to reference Fu Z, Zhang S, Wang B, Huang W, Zheng L, Cheng A. Annexin A1: a double-edged sword as novel cancer biomarker. Clin Chim Acta. 2020;504:36–42.CrossRef Fu Z, Zhang S, Wang B, Huang W, Zheng L, Cheng A. Annexin A1: a double-edged sword as novel cancer biomarker. Clin Chim Acta. 2020;504:36–42.CrossRef
34.
go back to reference Shao G, Zhou H, Zhang Q, Jin Y, Fu C. Advancements of Annexin A1 in inflammation and tumorigenesis. Onco Targets Ther. 2019;12:3245–54.CrossRef Shao G, Zhou H, Zhang Q, Jin Y, Fu C. Advancements of Annexin A1 in inflammation and tumorigenesis. Onco Targets Ther. 2019;12:3245–54.CrossRef
35.
go back to reference Foo SL, Yap G, Cui J, Lim LHK. Annexin-A1 - a blessing or a curse in Cancer? Trends Mol Med. 2019;25(4):315–27.CrossRef Foo SL, Yap G, Cui J, Lim LHK. Annexin-A1 - a blessing or a curse in Cancer? Trends Mol Med. 2019;25(4):315–27.CrossRef
36.
go back to reference Baracco EE, Petrazzuolo A, Kroemer G. Assessment of annexin A1 release during immunogenic cell death. Methods Enzymol. 2019;629:71–9.CrossRef Baracco EE, Petrazzuolo A, Kroemer G. Assessment of annexin A1 release during immunogenic cell death. Methods Enzymol. 2019;629:71–9.CrossRef
37.
go back to reference Vacchelli E, Ma Y, Baracco EE, Zitvogel L, Kroemer G. Yet another pattern recognition receptor involved in the chemotherapy-induced anticancer immune response: Formyl peptide receptor-1. Oncoimmunology. 2016;5(5):e1118600.CrossRef Vacchelli E, Ma Y, Baracco EE, Zitvogel L, Kroemer G. Yet another pattern recognition receptor involved in the chemotherapy-induced anticancer immune response: Formyl peptide receptor-1. Oncoimmunology. 2016;5(5):e1118600.CrossRef
38.
go back to reference Wang C, Xiao Q, Li YW, Zhao C, Jia N, Li RL, Cao SS, Cui J, Wang L, Wu Y, et al. Regulatory mechanisms of annexin-induced chemotherapy resistance in cisplatin resistant lung adenocarcinoma. Asian Pac J Cancer Prev. 2014;15(7):3191–4.CrossRef Wang C, Xiao Q, Li YW, Zhao C, Jia N, Li RL, Cao SS, Cui J, Wang L, Wu Y, et al. Regulatory mechanisms of annexin-induced chemotherapy resistance in cisplatin resistant lung adenocarcinoma. Asian Pac J Cancer Prev. 2014;15(7):3191–4.CrossRef
39.
go back to reference Rouanet J, Benboubker V, Akil H, Hennino A, Auzeloux P, Besse S, Pereira B, Delorme S, Mansard S, D’Incan M, et al. Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy. Cancer Immunol Immunother. 2020;69(10):2075–88.CrossRef Rouanet J, Benboubker V, Akil H, Hennino A, Auzeloux P, Besse S, Pereira B, Delorme S, Mansard S, D’Incan M, et al. Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy. Cancer Immunol Immunother. 2020;69(10):2075–88.CrossRef
Metadata
Title
Tumor vasculature-targeted 10B delivery by an Annexin A1-binding peptide boosts effects of boron neutron capture therapy
Authors
Tohru Yoneyama
Shingo Hatakeyama
Mihoko Sutoh Yoneyama
Taku Yoshiya
Tsuyoshi Uemura
Takehiro Ishizu
Minoru Suzuki
Shingo Hachinohe
Shintaro Ishiyama
Motohiro Nonaka
Michiko N. Fukuda
Chikara Ohyama
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07760-x

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine