Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Metastasis | Research article

Dynamic and unpredictable changes in mutant allele fractions of BRAF and NRAS during visceral progression of cutaneous malignant melanoma

Authors: V. Doma, S. Kárpáti, E. Rásó, T. Barbai, J. Tímár

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Data indicate that primary cutaneous melanomas are characterized by clonal heterogeneity associated with oncogenic drivers. Less data are available on the clonal changes occurring during melanoma progression. We therefore wished to analyse these changes in skin melanomas in common sites of visceral metastases as compared to the primary tumor.

Methods

An autopsy cohort of 50 patients with BRAF- and NRAS-mutant cutaneous metastatic melanomas including 139 visceral metastases was analysed for mutant allele fractions (MAF), determined by pyrosequencing and corrected for tumor/normal ratio. MAF levels were also classified as high (> 40%), medium (15–40%) or low (< 15%).

Results

Contrary to NRAS mutant cases, in BRAF-mutant melanomas MAFs were found to be significantly increased in visceral metastases compared to the primary due to the significantly higher levels in lung-, adrenal gland-, intestinal- and kidney metastases. The incidence of the three MAF variants in BRAF-mutant primaries was similar, whereas the high MAF cases were found to be increased in metastases. On the other hand, medium MAF levels were more common in case of NRAS-mutant tumors. Only 31.3% of BRAF mutant- and 50% of NRAS mutant cases maintained the MAF profile of the primary in metastasis. In the majority of multiple metastatic tumors, (BRAF:71.8%, NRAS:75%) metastases were relatively homogeneous regarding MAF. However, in 6/32(18.7%) of BRAF mutant cases low MAF primaries switched to high MAF in metastases. In heterogeneous BRAF mutant metastatic cases low to high or high to low MAF conversions occurred in a further 4/32(12.5%) cases in individual metastases as compared to the primary tumors. At lower frequency, in NRAS mutant tumor such changes also observed (2/12,16.7%).

Conclusion

We provided evidence for the selection of BRAF-mutant melanoma cells during metastatic progression to the lung, intestine, adrenal gland and kidney. Our findings suggest that in visceral metastases of malignant melanoma BRAF- or NRAS-MAFs are rather heterogeneous and cannot be predicted from data of the primary tumor. These data may have clinical significance when using targeted therapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Turajlic S, Swanton C. Metastasis as an evolutionary process. Science. 2016;352:169–75.CrossRef Turajlic S, Swanton C. Metastasis as an evolutionary process. Science. 2016;352:169–75.CrossRef
2.
go back to reference Heinzerling L, Baiter M, Kuhnapfel S, et al. Mutation landscape in melanoma patients, clinical implications of heterogeneity of BRAF mutations. Br J Cancer. 2013;109:2833–41.CrossRef Heinzerling L, Baiter M, Kuhnapfel S, et al. Mutation landscape in melanoma patients, clinical implications of heterogeneity of BRAF mutations. Br J Cancer. 2013;109:2833–41.CrossRef
3.
go back to reference Helias-Rodzewicz Z, Funck-Brentano E, Baudoux L, et al. Variations in BRAF mutant allele percentage in melanomas. BMC Cancer. 2015;15:497–506.CrossRef Helias-Rodzewicz Z, Funck-Brentano E, Baudoux L, et al. Variations in BRAF mutant allele percentage in melanomas. BMC Cancer. 2015;15:497–506.CrossRef
4.
go back to reference Helias-Rodzewicz Z, Funck-Brentano E, Terrones N, et al. Variation of mutant allele frequency in NRASQ61 mutated melanomas. BMC Dermatol. 2017;17:9.CrossRef Helias-Rodzewicz Z, Funck-Brentano E, Terrones N, et al. Variation of mutant allele frequency in NRASQ61 mutated melanomas. BMC Dermatol. 2017;17:9.CrossRef
5.
go back to reference Cheng L, Lopez-Beltran A, Massari F, et al. Molecular resting for BRAF mutations to inform melanoma treatment decisions: a move toward peecision medicine. Modern Pathol. 2018;31:24–38.CrossRef Cheng L, Lopez-Beltran A, Massari F, et al. Molecular resting for BRAF mutations to inform melanoma treatment decisions: a move toward peecision medicine. Modern Pathol. 2018;31:24–38.CrossRef
6.
go back to reference Boursault L, Haddad V, Vergier B, et al. Tumor homogeneity between primary and metastatic sites for BRAF status in metastatic melanoma determined by immunohistochemical and molecular testing. PLoS One. 2013;8:e70826.CrossRef Boursault L, Haddad V, Vergier B, et al. Tumor homogeneity between primary and metastatic sites for BRAF status in metastatic melanoma determined by immunohistochemical and molecular testing. PLoS One. 2013;8:e70826.CrossRef
7.
go back to reference Colombino M, Capone M, Lissia A, et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30:2522–9.CrossRef Colombino M, Capone M, Lissia A, et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30:2522–9.CrossRef
8.
go back to reference Yancovitz M, Litterman A, Yoon J, et al. Intra- and inter-tumor heterogeneity of BRAF(V600E) mutations in primary and metastatic melanoma. PLoS One. 2012;7:e29336.CrossRef Yancovitz M, Litterman A, Yoon J, et al. Intra- and inter-tumor heterogeneity of BRAF(V600E) mutations in primary and metastatic melanoma. PLoS One. 2012;7:e29336.CrossRef
9.
go back to reference Bradish JR, Richey JD, Post KM, et al. Discordancy in BRAF mutations among primary and metastatic melanoma lesions: clinical implications for targeted therapy. Mod Pathol. 2015;28:480–6.CrossRef Bradish JR, Richey JD, Post KM, et al. Discordancy in BRAF mutations among primary and metastatic melanoma lesions: clinical implications for targeted therapy. Mod Pathol. 2015;28:480–6.CrossRef
10.
go back to reference Kaji T, Yamasaki O, Takata M, et al. Comparative study on driver mutations in primary and metastatic melanomas at a single Japanese institute: a clue for intra- and inter-tumor heterogeneity. J Dermatol Sci. 2017;85:51–7.CrossRef Kaji T, Yamasaki O, Takata M, et al. Comparative study on driver mutations in primary and metastatic melanomas at a single Japanese institute: a clue for intra- and inter-tumor heterogeneity. J Dermatol Sci. 2017;85:51–7.CrossRef
11.
go back to reference Bruno W, Martinuzzi C, Andreotti V, et al. Heterogeneity and frequency of BRAF mutations in primary melanoma: comparison between molecular methods and immunohistochemistry. Oncotarget. 2017;8:8069–82.PubMed Bruno W, Martinuzzi C, Andreotti V, et al. Heterogeneity and frequency of BRAF mutations in primary melanoma: comparison between molecular methods and immunohistochemistry. Oncotarget. 2017;8:8069–82.PubMed
12.
go back to reference Ding L, Kim MJ, Kanchi KL, et al. Clonal architectures and driver mutations in metastatic melanomas. PLoS One. 2014;(11):e111153.CrossRef Ding L, Kim MJ, Kanchi KL, et al. Clonal architectures and driver mutations in metastatic melanomas. PLoS One. 2014;(11):e111153.CrossRef
13.
go back to reference Sanborn JZ, Chung J, Purdom E, et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. PNAS. 2015;112:10995–1000.CrossRef Sanborn JZ, Chung J, Purdom E, et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. PNAS. 2015;112:10995–1000.CrossRef
14.
go back to reference Satzger I, Marks L, Merick M, Klages S, et al. Allele frequencies of BRAFV600 mutations in primary melanomas and matched metastases and their relevance for BRAF inhibitor therapy in metastatic melanoma. Oncotarget. 2015;6:37895–905.CrossRef Satzger I, Marks L, Merick M, Klages S, et al. Allele frequencies of BRAFV600 mutations in primary melanomas and matched metastases and their relevance for BRAF inhibitor therapy in metastatic melanoma. Oncotarget. 2015;6:37895–905.CrossRef
15.
go back to reference Lebbé C, How-Kit A, Battistella M, et al. BRAFV600 mutation levels predict response to vemurafenib in metastatic melanoma. Melanoma Res. 2014;24:415–8.CrossRef Lebbé C, How-Kit A, Battistella M, et al. BRAFV600 mutation levels predict response to vemurafenib in metastatic melanoma. Melanoma Res. 2014;24:415–8.CrossRef
16.
go back to reference Mesbah Ardakani N, Leslie C, Grieu-Iacopetta F, et al. Clinical and therapeutic implications of BRAF mutation heterogeneity in metastatic melanoma. Pigment Cell Mel Res. 2017;30:233–42.CrossRef Mesbah Ardakani N, Leslie C, Grieu-Iacopetta F, et al. Clinical and therapeutic implications of BRAF mutation heterogeneity in metastatic melanoma. Pigment Cell Mel Res. 2017;30:233–42.CrossRef
17.
go back to reference Boespflug A, Funck-Brentano E, Helias-Rodzewicz Z, et al. Reply to clinical and therapeutic implications of BRAF mutation heterogeneity in metastatic melanoma by Mesbah Ardakani. Pigment Cell Mel Res. 2017;30:498–500.CrossRef Boespflug A, Funck-Brentano E, Helias-Rodzewicz Z, et al. Reply to clinical and therapeutic implications of BRAF mutation heterogeneity in metastatic melanoma by Mesbah Ardakani. Pigment Cell Mel Res. 2017;30:498–500.CrossRef
18.
go back to reference Dienstmann R, Elez E, Argiles G, Matos I, et al. Analysis of mutant allele fractions in driver genes in colorectal cancer – biological and clinical insights. Mol Oncol. 2017;11:1263–72.CrossRef Dienstmann R, Elez E, Argiles G, Matos I, et al. Analysis of mutant allele fractions in driver genes in colorectal cancer – biological and clinical insights. Mol Oncol. 2017;11:1263–72.CrossRef
19.
go back to reference Chang GA, Polsky D. Mutational heterogeneity in melanoma: an inconvenient truth. J Invest Dermatol. 2015;135:2913–8.CrossRef Chang GA, Polsky D. Mutational heterogeneity in melanoma: an inconvenient truth. J Invest Dermatol. 2015;135:2913–8.CrossRef
20.
go back to reference Adler NR, Wolfe R, Kelly JW, et al. Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. Br J Cancer. 2017;117:1026–35.CrossRef Adler NR, Wolfe R, Kelly JW, et al. Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. Br J Cancer. 2017;117:1026–35.CrossRef
21.
go back to reference Alizadeh AA, Aranda V, Bardelli A, et al. Toward understanding and exploiting tumor heterogeneity. Nature Med. 2017;21:846–58.CrossRef Alizadeh AA, Aranda V, Bardelli A, et al. Toward understanding and exploiting tumor heterogeneity. Nature Med. 2017;21:846–58.CrossRef
22.
go back to reference Macintyre G, Van Loo P, Corcoran NM, et al. How subclonal modeling is changing the metastatic paradigm. Clin Cancer Res. 2017;23:630–5.CrossRef Macintyre G, Van Loo P, Corcoran NM, et al. How subclonal modeling is changing the metastatic paradigm. Clin Cancer Res. 2017;23:630–5.CrossRef
23.
go back to reference Menzies AM, Long GV. Dabrafenib and Trametinib, alone and in combination for BRAF-mutant metastatic melanoma. Clin Cancer Res. 2014;20:2035–43.CrossRef Menzies AM, Long GV. Dabrafenib and Trametinib, alone and in combination for BRAF-mutant metastatic melanoma. Clin Cancer Res. 2014;20:2035–43.CrossRef
24.
go back to reference Medina TM, Lewis KD. The evolution of combined molecular targeted therapies to advance the therapeutic efficacy in melanoma: a highlight of vemurafenib and cobimetinib. Onco Targets Ther. 2016;9:3739–52.PubMedPubMedCentral Medina TM, Lewis KD. The evolution of combined molecular targeted therapies to advance the therapeutic efficacy in melanoma: a highlight of vemurafenib and cobimetinib. Onco Targets Ther. 2016;9:3739–52.PubMedPubMedCentral
Metadata
Title
Dynamic and unpredictable changes in mutant allele fractions of BRAF and NRAS during visceral progression of cutaneous malignant melanoma
Authors
V. Doma
S. Kárpáti
E. Rásó
T. Barbai
J. Tímár
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5990-9

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine