Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Mutation allele frequency threshold does not affect prognostic analysis using next-generation sequencing in oral squamous cell carcinoma

Authors: Jie Ma, Yong Fu, Yao-yao Tu, Ying Liu, Yi-ran Tan, Wu-tong Ju, Curtis R. Pickering, Jeffrey N. Myers, Zhi-yuan Zhang, Lai-ping Zhong

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

With the development of sequencing technologies, there may be some disputes on sequencing analysis. The aim of this study was to investigate different allele frequency thresholds of mutations in targeted genes on prognostic analyses using a panel of cancer associated gene exons (CAGE) in oral squamous cell carcinoma (OSCC).

Methods

Forty-six patients were included in this study. Twelve genes were sequenced and analyzed using next-generation sequencing from formalin-fixed paraffin-embedded tissues. Allele frequency thresholds of 10, 5, and 3% were used for prognostic analyses.

Results

With a mean sequence depth of 3199-fold, 99% of CAGE were represented by at least 10 reads. Ninety-four non-synonymous (missense [70.2%], nonsense [11.7%], splice site [10.6%], and insertion/deletion [7.5%]) mutations were detected in 40 OSCC patients with an allele frequency threshold of 10%. TP53 (78.3%), NOTCH1 (30.4%), CASP8 (13.0%), CDKN2A (10.9%), and CDH1 (6.5%) were the most frequently mutated genes. Using allele frequency thresholds of 10, 5, and 3%, there were no significant differences in clinical outcomes between patients with non-synonymous mutations and wild type genotypes.

Conclusions

TP53, NOTCH1, CASP8, CDKN2A, and CDH1 are the most frequently mutated genes in OSCC patients. The allele frequency threshold used in this study does not affect the results of clinical outcome analysis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed
2.
go back to reference Pfister DG, Spencer S, Brizel DM, et al. Head and neck cancers, version 2.2014. Clinical practice guidelines in oncology. J Nat Comprehensive Cancer Net JNCCN. 2014;12:1454–87.CrossRef Pfister DG, Spencer S, Brizel DM, et al. Head and neck cancers, version 2.2014. Clinical practice guidelines in oncology. J Nat Comprehensive Cancer Net JNCCN. 2014;12:1454–87.CrossRef
3.
go back to reference Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7.CrossRefPubMedPubMedCentral Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7.CrossRefPubMedPubMedCentral
4.
go back to reference Neskey DM, Osman AA, Ow TJ, et al. Evolutionary action score of TP53 identifies high-risk mutations associated with decreased survival and increased distant metastases in head and neck cancer. Cancer Res. 2015;75:1527–36.CrossRefPubMedPubMedCentral Neskey DM, Osman AA, Ow TJ, et al. Evolutionary action score of TP53 identifies high-risk mutations associated with decreased survival and increased distant metastases in head and neck cancer. Cancer Res. 2015;75:1527–36.CrossRefPubMedPubMedCentral
5.
go back to reference Chen SJ, Liu H, Liao CT, et al. Ultra-deep targeted sequencing of advanced oral squamous cell carcinoma identifies a mutation-based prognostic gene signature. Oncotarget. 2015;6:18066–80.PubMedPubMedCentral Chen SJ, Liu H, Liao CT, et al. Ultra-deep targeted sequencing of advanced oral squamous cell carcinoma identifies a mutation-based prognostic gene signature. Oncotarget. 2015;6:18066–80.PubMedPubMedCentral
6.
go back to reference Liao CT, Chen SJ, Lee LY, et al. An ultra-deep targeted sequencing gene panel improves the prognostic stratification of patients with advanced oral cavity squamous cell carcinoma. Medicine. 2016;95:e2751.CrossRefPubMedPubMedCentral Liao CT, Chen SJ, Lee LY, et al. An ultra-deep targeted sequencing gene panel improves the prognostic stratification of patients with advanced oral cavity squamous cell carcinoma. Medicine. 2016;95:e2751.CrossRefPubMedPubMedCentral
7.
go back to reference Osman AA, Neskey DM, Katsonis P, et al. Evolutionary action score of TP53 coding variants is predictive of platinum response in head and neck cancer patients. Cancer Res. 2015;75:1205–15.CrossRefPubMedPubMedCentral Osman AA, Neskey DM, Katsonis P, et al. Evolutionary action score of TP53 coding variants is predictive of platinum response in head and neck cancer patients. Cancer Res. 2015;75:1205–15.CrossRefPubMedPubMedCentral
8.
go back to reference Song X, Xia R, Li J, et al. Common and complex Notch1 mutations in Chinese oral squamous cell carcinoma. Clin Cancer Res. 2014;20:701–10.CrossRefPubMed Song X, Xia R, Li J, et al. Common and complex Notch1 mutations in Chinese oral squamous cell carcinoma. Clin Cancer Res. 2014;20:701–10.CrossRefPubMed
9.
go back to reference Izumchenko E, Sun K, Jones S, et al. Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev Res. 2015;8:277–86.CrossRef Izumchenko E, Sun K, Jones S, et al. Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev Res. 2015;8:277–86.CrossRef
10.
go back to reference Ock CY, Son B, Keam B, et al. Identification of genomic mutations associated with clinical outcomes of induction chemotherapy in patients with head and neck squamous cell carcinoma. J Cancer Res Clin Oncol. 2016;142:873–83.CrossRefPubMed Ock CY, Son B, Keam B, et al. Identification of genomic mutations associated with clinical outcomes of induction chemotherapy in patients with head and neck squamous cell carcinoma. J Cancer Res Clin Oncol. 2016;142:873–83.CrossRefPubMed
11.
13.
go back to reference Pickering CR, Zhang J, Yoo SY, et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 2013;3:770–81.CrossRefPubMed Pickering CR, Zhang J, Yoo SY, et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 2013;3:770–81.CrossRefPubMed
14.
go back to reference Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–55.CrossRefPubMed Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–55.CrossRefPubMed
15.
go back to reference Saha T, Kar RK, Sa G. Structural and sequential context of p53: a review of experimental and theoretical evidence. Prog Biophys Mol Biol. 2015;117:250–63.CrossRefPubMed Saha T, Kar RK, Sa G. Structural and sequential context of p53: a review of experimental and theoretical evidence. Prog Biophys Mol Biol. 2015;117:250–63.CrossRefPubMed
16.
go back to reference Pavletich NP, Chambers KA, Pabo CO. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev. 1993;7:2556–64.CrossRefPubMed Pavletich NP, Chambers KA, Pabo CO. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev. 1993;7:2556–64.CrossRefPubMed
18.
go back to reference Chillakuri CR, Sheppard D, Lea SM, Handford PA. Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol. 2012;23:421–8.CrossRefPubMedPubMedCentral Chillakuri CR, Sheppard D, Lea SM, Handford PA. Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol. 2012;23:421–8.CrossRefPubMedPubMedCentral
20.
go back to reference de Celis JF, Bray SJ. The Abruptex domain of notch regulates negative interactions between notch, its ligands and fringe. Development. 2000;127:1291–302.PubMed de Celis JF, Bray SJ. The Abruptex domain of notch regulates negative interactions between notch, its ligands and fringe. Development. 2000;127:1291–302.PubMed
21.
go back to reference Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9:701–13.CrossRefPubMed Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9:701–13.CrossRefPubMed
22.
go back to reference Kruidering M, Evan GI. Caspase-8 in apoptosis: the beginning of "the end"? IUBMB Life. 2000;50:85–90.CrossRefPubMed Kruidering M, Evan GI. Caspase-8 in apoptosis: the beginning of "the end"? IUBMB Life. 2000;50:85–90.CrossRefPubMed
23.
go back to reference Blanchard H, Kodandapani L, Mittl PR, et al. The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure. 1999;7:1125–33.CrossRefPubMed Blanchard H, Kodandapani L, Mittl PR, et al. The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure. 1999;7:1125–33.CrossRefPubMed
24.
go back to reference Al-Kaabi A, van Bockel LW, Pothen AJ, Willems SM. p16INK4A and p14ARF gene promoter hypermethylation as prognostic biomarker in oral and oropharyngeal squamous cell carcinoma: a review. Dis Markers. 2014;2014:260549.CrossRefPubMedPubMedCentral Al-Kaabi A, van Bockel LW, Pothen AJ, Willems SM. p16INK4A and p14ARF gene promoter hypermethylation as prognostic biomarker in oral and oropharyngeal squamous cell carcinoma: a review. Dis Markers. 2014;2014:260549.CrossRefPubMedPubMedCentral
25.
go back to reference Schlecht NF, Ben-Dayan M, Anayannis N, et al. Epigenetic changes in the CDKN2A locus are associated with differential expression of P16INK4A and P14ARF in HPV-positive oropharyngeal squamous cell carcinoma. Cancer Med. 2015;4:342–53.CrossRefPubMedPubMedCentral Schlecht NF, Ben-Dayan M, Anayannis N, et al. Epigenetic changes in the CDKN2A locus are associated with differential expression of P16INK4A and P14ARF in HPV-positive oropharyngeal squamous cell carcinoma. Cancer Med. 2015;4:342–53.CrossRefPubMedPubMedCentral
26.
go back to reference Ishida E, Nakamura M, Ikuta M, et al. Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol. 2005;41:614–22.CrossRefPubMed Ishida E, Nakamura M, Ikuta M, et al. Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol. 2005;41:614–22.CrossRefPubMed
Metadata
Title
Mutation allele frequency threshold does not affect prognostic analysis using next-generation sequencing in oral squamous cell carcinoma
Authors
Jie Ma
Yong Fu
Yao-yao Tu
Ying Liu
Yi-ran Tan
Wu-tong Ju
Curtis R. Pickering
Jeffrey N. Myers
Zhi-yuan Zhang
Lai-ping Zhong
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4481-8

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine