Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma

Authors: Anderson H. Webb, Bradley T. Gao, Zachary K. Goldsmith, Andrew S. Irvine, Nabil Saleh, Ryan P. Lee, Justin B. Lendermon, Rajini Bheemreddy, Qiuhua Zhang, Rachel C. Brennan, Dianna Johnson, Jena J. Steinle, Matthew W. Wilson, Vanessa M. Morales-Tirado

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Retinoblastoma (Rb) is the most common primary intraocular tumor in children. Local treatment of the intraocular disease is usually effective if diagnosed early; however advanced Rb can metastasize through routes that involve invasion of the choroid, sclera and optic nerve or more broadly via the ocular vasculature. Metastatic Rb patients have very high mortality rates. While current therapy for Rb is directed toward blocking tumor cell division and tumor growth, there are no specific treatments targeted to block Rb metastasis. Two such targets are matrix metalloproteinases-2 and -9 (MMP-2, −9), which degrade extracellular matrix as a prerequisite for cellular invasion and have been shown to be involved in other types of cancer metastasis. Cancer Clinical Trials with an anti-MMP-9 therapeutic antibody were recently initiated, prompting us to investigate the role of MMP-2, −9 in Rb metastasis.

Methods

We compare MMP-2, −9 activity in two well-studied Rb cell lines: Y79, which exhibits high metastatic potential and Weri-1, which has low metastatic potential. The effects of inhibitors of MMP-2 (ARP100) and MMP-9 (AG-L-66085) on migration, angiogenesis, and production of immunomodulatory cytokines were determined in both cell lines using qPCR, and ELISA. Cellular migration and potential for invasion were evaluated by the classic wound-healing assay and a Boyden Chamber assay.

Results

Our results showed that both inhibitors had differential effects on the two cell lines, significantly reducing migration in the metastatic Y79 cell line and greatly affecting the viability of Weri-1 cells. The MMP-9 inhibitor (MMP9I) AG-L-66085, diminished the Y79 angiogenic response. In Weri-1 cells, VEGF was significantly reduced and cell viability was decreased by both MMP-2 and MMP-9 inhibitors. Furthermore, inhibition of MMP-2 significantly reduced secretion of TGF-β1 in both Rb models.

Conclusions

Collectively, our data indicates MMP-2 and MMP-9 drive metastatic pathways, including migration, viability and secretion of angiogenic factors in Rb cells. These two subtypes of matrix metalloproteinases represent new potential candidates for targeted anti-metastatic therapy for Rb.
Appendix
Available only for authorised users
Literature
1.
go back to reference Broaddus E, Topham A, Singh AD. Incidence of retinoblastoma in the USA: 1975-2004. Br J Ophthalmol. 2009;93(1):21–3. PubMed PMID: 18621794CrossRefPubMed Broaddus E, Topham A, Singh AD. Incidence of retinoblastoma in the USA: 1975-2004. Br J Ophthalmol. 2009;93(1):21–3. PubMed PMID: 18621794CrossRefPubMed
2.
go back to reference Lohmann DR, Gallie BL. Retinoblastoma: revisiting the model prototype of inherited cancer. Am J Med Genet C: Semin Med Genet. 2004;129C(1):23–8. PubMed PMID: 15264269CrossRef Lohmann DR, Gallie BL. Retinoblastoma: revisiting the model prototype of inherited cancer. Am J Med Genet C: Semin Med Genet. 2004;129C(1):23–8. PubMed PMID: 15264269CrossRef
3.
go back to reference Abramson DH, Ellsworth RM, Grumbach N, Kitchin FD. Retinoblastoma: survival, age at detection and comparison 1914-1958, 1958-1983. J Pediatr Ophthalmol Strabismus. 1985;22(6):246–50. PubMed PMID: 4078667PubMed Abramson DH, Ellsworth RM, Grumbach N, Kitchin FD. Retinoblastoma: survival, age at detection and comparison 1914-1958, 1958-1983. J Pediatr Ophthalmol Strabismus. 1985;22(6):246–50. PubMed PMID: 4078667PubMed
4.
go back to reference Abramson DH, Ellsworth RM, Grumbach N, Sturgis-Buckhout L, Haik BG. Retinoblastoma: correlation between age at diagnosis and survival. J Pediatr Ophthalmol Strabismus. 1986;23(4):174–7. PubMed PMID: 3746592PubMed Abramson DH, Ellsworth RM, Grumbach N, Sturgis-Buckhout L, Haik BG. Retinoblastoma: correlation between age at diagnosis and survival. J Pediatr Ophthalmol Strabismus. 1986;23(4):174–7. PubMed PMID: 3746592PubMed
5.
go back to reference Erwenne CM, Franco EL. Age and lateness of referral as determinants of extra-ocular retinoblastoma. Ophthalmic paediatrics and genetics. 1989;10(3):179–84. PubMed PMID: 2587030CrossRefPubMed Erwenne CM, Franco EL. Age and lateness of referral as determinants of extra-ocular retinoblastoma. Ophthalmic paediatrics and genetics. 1989;10(3):179–84. PubMed PMID: 2587030CrossRefPubMed
6.
go back to reference Rubenfeld M, Abramson DH, Ellsworth RM, Kitchin FD. Unilateral vs. bilateral retinoblastoma. Correlations between age at diagnosis and stage of ocular disease. Ophthalmology. 1986;93(8):1016–9. PubMed PMID: 3763146CrossRefPubMed Rubenfeld M, Abramson DH, Ellsworth RM, Kitchin FD. Unilateral vs. bilateral retinoblastoma. Correlations between age at diagnosis and stage of ocular disease. Ophthalmology. 1986;93(8):1016–9. PubMed PMID: 3763146CrossRefPubMed
7.
go back to reference Bader JL, Meadows AT, Zimmerman LE, Rorke LB, Voute PA, Champion LA, et al. Bilateral retinoblastoma with ectopic intracranial retinoblastoma: trilateral retinoblastoma. Cancer Genet Cytogenet. 1982;5(3):203–13. PubMed PMID: 7066879CrossRefPubMed Bader JL, Meadows AT, Zimmerman LE, Rorke LB, Voute PA, Champion LA, et al. Bilateral retinoblastoma with ectopic intracranial retinoblastoma: trilateral retinoblastoma. Cancer Genet Cytogenet. 1982;5(3):203–13. PubMed PMID: 7066879CrossRefPubMed
8.
go back to reference Messmer EP, Heinrich T, Hopping W, de Sutter E, Havers W, Sauerwein W. Risk factors for metastases in patients with retinoblastoma. Ophthalmology. 1991;98(2):136–41. PubMed PMID: 2008269CrossRefPubMed Messmer EP, Heinrich T, Hopping W, de Sutter E, Havers W, Sauerwein W. Risk factors for metastases in patients with retinoblastoma. Ophthalmology. 1991;98(2):136–41. PubMed PMID: 2008269CrossRefPubMed
9.
go back to reference Shields CL, Shields JA, Baez KA, Cater J, De Potter PV. Choroidal invasion of retinoblastoma: metastatic potential and clinical risk factors. Br J Ophthalmol. 1993;77(9):544–8. PubMed PMID: 8218048. Pubmed Central PMCID: 513947CrossRefPubMedPubMedCentral Shields CL, Shields JA, Baez KA, Cater J, De Potter PV. Choroidal invasion of retinoblastoma: metastatic potential and clinical risk factors. Br J Ophthalmol. 1993;77(9):544–8. PubMed PMID: 8218048. Pubmed Central PMCID: 513947CrossRefPubMedPubMedCentral
10.
go back to reference Sastre X, Chantada GL, Doz F, Wilson MW, de Davila MT, Rodriguez-Galindo C, et al. Proceedings of the consensus meetings from the International retinoblastoma staging working group on the pathology guidelines for the examination of enucleated eyes and evaluation of prognostic risk factors in retinoblastoma. Archives of pathology & laboratory medicine. 2009;133(8):1199–202. PubMed PMID: 19653709 Sastre X, Chantada GL, Doz F, Wilson MW, de Davila MT, Rodriguez-Galindo C, et al. Proceedings of the consensus meetings from the International retinoblastoma staging working group on the pathology guidelines for the examination of enucleated eyes and evaluation of prognostic risk factors in retinoblastoma. Archives of pathology & laboratory medicine. 2009;133(8):1199–202. PubMed PMID: 19653709
11.
go back to reference Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids. 2011;41(2):271–90. PubMed PMID: 20640864. Pubmed Central PMCID: 3102199CrossRefPubMed Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids. 2011;41(2):271–90. PubMed PMID: 20640864. Pubmed Central PMCID: 3102199CrossRefPubMed
12.
go back to reference Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8(3):221–33. PubMed PMID: 17318226. Pubmed Central PMCID: 2760082CrossRefPubMedPubMedCentral Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8(3):221–33. PubMed PMID: 17318226. Pubmed Central PMCID: 2760082CrossRefPubMedPubMedCentral
13.
go back to reference Overall CM. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol. 2002;22(1):51–86. PubMed PMID: 12353914CrossRefPubMed Overall CM. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol. 2002;22(1):51–86. PubMed PMID: 12353914CrossRefPubMed
14.
go back to reference Wieczorek E, Jablonska E, Wasowicz W, Reszka E. Matrix metalloproteinases and genetic mouse models in cancer research: a mini-review. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(1):163–75. PubMed PMID: 25352026. Pubmed Central PMCID: 4315474CrossRef Wieczorek E, Jablonska E, Wasowicz W, Reszka E. Matrix metalloproteinases and genetic mouse models in cancer research: a mini-review. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(1):163–75. PubMed PMID: 25352026. Pubmed Central PMCID: 4315474CrossRef
15.
go back to reference Foda HD, Zucker S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today. 2001;6(9):478–82. PubMed PMID: 11344033CrossRefPubMed Foda HD, Zucker S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today. 2001;6(9):478–82. PubMed PMID: 11344033CrossRefPubMed
16.
go back to reference Zucker S, Hymowitz M, Rollo EE, Mann R, Conner CE, Cao J, et al. Tumorigenic potential of extracellular matrix metalloproteinase inducer. Am J Pathol. 2001;158(6):1921–8. PubMed PMID: 11395366. Pubmed Central PMCID: 1891983CrossRefPubMedPubMedCentral Zucker S, Hymowitz M, Rollo EE, Mann R, Conner CE, Cao J, et al. Tumorigenic potential of extracellular matrix metalloproteinase inducer. Am J Pathol. 2001;158(6):1921–8. PubMed PMID: 11395366. Pubmed Central PMCID: 1891983CrossRefPubMedPubMedCentral
17.
go back to reference Devy L, Dransfield DT. New strategies for the Next generation of matrix-metalloproteinase inhibitors: selectively targeting membrane-anchored MMPs with therapeutic antibodies. Biochem Res Int. 2011;2011:191670. PubMed PMID: 21152183. Pubmed Central PMCID: 2989751CrossRefPubMed Devy L, Dransfield DT. New strategies for the Next generation of matrix-metalloproteinase inhibitors: selectively targeting membrane-anchored MMPs with therapeutic antibodies. Biochem Res Int. 2011;2011:191670. PubMed PMID: 21152183. Pubmed Central PMCID: 2989751CrossRefPubMed
19.
go back to reference Marshall DC, Lyman SK, McCauley S, Kovalenko M, Spangler R, Liu C, et al. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One. 2015;10(5):e0127063. PubMed PMID: 25961845. Pubmed Central PMCID: 4427291CrossRefPubMedPubMedCentral Marshall DC, Lyman SK, McCauley S, Kovalenko M, Spangler R, Liu C, et al. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One. 2015;10(5):e0127063. PubMed PMID: 25961845. Pubmed Central PMCID: 4427291CrossRefPubMedPubMedCentral
20.
go back to reference Adithi M, Nalini V, Kandalam M, Krishnakumar S. Expression of matrix metalloproteinases and their inhibitors in retinoblastoma. J Pediatr Hematol Oncol. 2007;29(6):399–405. PubMed PMID: 17551402CrossRefPubMed Adithi M, Nalini V, Kandalam M, Krishnakumar S. Expression of matrix metalloproteinases and their inhibitors in retinoblastoma. J Pediatr Hematol Oncol. 2007;29(6):399–405. PubMed PMID: 17551402CrossRefPubMed
21.
go back to reference Long H, Zhou B, Jiang FG. Expression of MMP-2 and MMP-9 in retinoblastoma and their significance. International journal of ophthalmology. 2011;4(5):489–91. PubMed PMID: 22553708. Pubmed Central PMCID: 3340721PubMedPubMedCentral Long H, Zhou B, Jiang FG. Expression of MMP-2 and MMP-9 in retinoblastoma and their significance. International journal of ophthalmology. 2011;4(5):489–91. PubMed PMID: 22553708. Pubmed Central PMCID: 3340721PubMedPubMedCentral
22.
go back to reference Reid TW, Albert DM, Rabson AS, Russell P, Craft J, Chu EW, et al. Characteristics of an established cell line of retinoblastoma. J Natl Cancer Inst. 1974;53(2):347–60. PubMed PMID: 4135597CrossRefPubMed Reid TW, Albert DM, Rabson AS, Russell P, Craft J, Chu EW, et al. Characteristics of an established cell line of retinoblastoma. J Natl Cancer Inst. 1974;53(2):347–60. PubMed PMID: 4135597CrossRefPubMed
23.
go back to reference McFall RC, Sery TW, Makadon M. Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Res. 1977;37(4):1003–10. PubMed PMID: 844036PubMed McFall RC, Sery TW, Makadon M. Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Res. 1977;37(4):1003–10. PubMed PMID: 844036PubMed
24.
go back to reference Chintalapudi SR, Djenderedjian L, Stiemke AB, Steinle JJ, Jablonski MM, Morales-Tirado VM. Isolation and Molecular profiling of primary mouse retinal ganglion cells: comparison of phenotypes from healthy and glaucomatous retinas. Front Aging Neurosci. 2016;8:93. PubMed PMID: 27242509. Pubmed Central PMCID: 4870266CrossRefPubMedPubMedCentral Chintalapudi SR, Djenderedjian L, Stiemke AB, Steinle JJ, Jablonski MM, Morales-Tirado VM. Isolation and Molecular profiling of primary mouse retinal ganglion cells: comparison of phenotypes from healthy and glaucomatous retinas. Front Aging Neurosci. 2016;8:93. PubMed PMID: 27242509. Pubmed Central PMCID: 4870266CrossRefPubMedPubMedCentral
25.
go back to reference Chintalapudi SR, Morales-Tirado VM, Williams RW, Jablonski MM. Multipronged approach to identify and validate a novel upstream regulator of Sncg in mouse retinal ganglion cells. FEBS J. 2016;283(4):678–93. PubMed PMID: 26663874CrossRefPubMed Chintalapudi SR, Morales-Tirado VM, Williams RW, Jablonski MM. Multipronged approach to identify and validate a novel upstream regulator of Sncg in mouse retinal ganglion cells. FEBS J. 2016;283(4):678–93. PubMed PMID: 26663874CrossRefPubMed
26.
go back to reference Morales-Tirado V, Johannson S, Hanson E, Howell A, Zhang J, Siminovitch KA, et al. Cutting edge: selective requirement for the Wiskott-Aldrich syndrome protein in cytokine, but not chemokine, secretion by CD4+ T cells. J Immunol. 2004;173(2):726–30. PubMed PMID: 15240657CrossRefPubMed Morales-Tirado V, Johannson S, Hanson E, Howell A, Zhang J, Siminovitch KA, et al. Cutting edge: selective requirement for the Wiskott-Aldrich syndrome protein in cytokine, but not chemokine, secretion by CD4+ T cells. J Immunol. 2004;173(2):726–30. PubMed PMID: 15240657CrossRefPubMed
27.
go back to reference Gao BT, Lee RP, Jiang Y, Steinle JJ, Morales-Tirado VM. Pioglitazone alters monocyte populations and stimulates recent thymic emigrants in the BBDZR/Wor type 2 diabetes rat model. Diabetology & metabolic syndrome. 2015;7:72. PubMed PMID: 26336514. Pubmed Central PMCID: 4557231CrossRef Gao BT, Lee RP, Jiang Y, Steinle JJ, Morales-Tirado VM. Pioglitazone alters monocyte populations and stimulates recent thymic emigrants in the BBDZR/Wor type 2 diabetes rat model. Diabetology & metabolic syndrome. 2015;7:72. PubMed PMID: 26336514. Pubmed Central PMCID: 4557231CrossRef
28.
go back to reference Thakran S, Zhang Q, Morales-Tirado V, Steinle JJ. Pioglitazone restores IGFBP-3 levels through DNA PK in retinal endothelial cells cultured in hyperglycemic conditions. Invest Ophthalmol Vis Sci. 2014;56(1):177–84. PubMed PMID: 25525174. Pubmed Central PMCID: 4294286CrossRefPubMed Thakran S, Zhang Q, Morales-Tirado V, Steinle JJ. Pioglitazone restores IGFBP-3 levels through DNA PK in retinal endothelial cells cultured in hyperglycemic conditions. Invest Ophthalmol Vis Sci. 2014;56(1):177–84. PubMed PMID: 25525174. Pubmed Central PMCID: 4294286CrossRefPubMed
29.
go back to reference Zhang Q, Jiang Y, Toutounchian J, Wilson MW, Morales-Tirado V, Miller DD, et al. Novel quinic acid derivative KZ-41 prevents retinal endothelial cell apoptosis without inhibiting retinoblastoma cell death through p38 signaling. Invest Ophthalmol Vis Sci. 2013;54(9):5937–43. PubMed PMID: 23942968. Pubmed Central PMCID: 3762329CrossRefPubMedPubMedCentral Zhang Q, Jiang Y, Toutounchian J, Wilson MW, Morales-Tirado V, Miller DD, et al. Novel quinic acid derivative KZ-41 prevents retinal endothelial cell apoptosis without inhibiting retinoblastoma cell death through p38 signaling. Invest Ophthalmol Vis Sci. 2013;54(9):5937–43. PubMed PMID: 23942968. Pubmed Central PMCID: 3762329CrossRefPubMedPubMedCentral
30.
go back to reference Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13(12):904–27. PubMed PMID: 25376097CrossRefPubMed Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13(12):904–27. PubMed PMID: 25376097CrossRefPubMed
31.
go back to reference Chevez-Barrios P, Hurwitz MY, Louie K, Marcus KT, Holcombe VN, Schafer P, et al. Metastatic and nonmetastatic models of retinoblastoma. Am J Pathol. 2000;157(4):1405–12. PubMed PMID: 11021842. Pubmed Central PMCID: 1850157CrossRefPubMedPubMedCentral Chevez-Barrios P, Hurwitz MY, Louie K, Marcus KT, Holcombe VN, Schafer P, et al. Metastatic and nonmetastatic models of retinoblastoma. Am J Pathol. 2000;157(4):1405–12. PubMed PMID: 11021842. Pubmed Central PMCID: 1850157CrossRefPubMedPubMedCentral
32.
go back to reference Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 2002;16(2):245–56. PubMed PMID: 11799067. Pubmed Central PMCID: 155321CrossRefPubMedPubMedCentral Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 2002;16(2):245–56. PubMed PMID: 11799067. Pubmed Central PMCID: 155321CrossRefPubMedPubMedCentral
33.
go back to reference Albert DM, Tapper D, Robinson NL, Felman R. Retinoblastoma and angiogenesis activity. Retina. 1984 Summer-Fall;4(3):189–94. PubMed PMID: 6208587. Albert DM, Tapper D, Robinson NL, Felman R. Retinoblastoma and angiogenesis activity. Retina. 1984 Summer-Fall;4(3):189–94. PubMed PMID: 6208587.
34.
go back to reference Hollborn M, Stathopoulos C, Steffen A, Wiedemann P, Kohen L, Bringmann A. Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest Ophthalmol Vis Sci. 2007;48(9):4360–7. PubMed PMID: 17724228CrossRefPubMed Hollborn M, Stathopoulos C, Steffen A, Wiedemann P, Kohen L, Bringmann A. Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest Ophthalmol Vis Sci. 2007;48(9):4360–7. PubMed PMID: 17724228CrossRefPubMed
35.
go back to reference Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994–8. PubMed PMID: 10373119CrossRefPubMed Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994–8. PubMed PMID: 10373119CrossRefPubMed
36.
go back to reference Krstic J, Santibanez JF. Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. TheScientificWorldJOURNAL. 2014;2014:521754. PubMed PMID: 24578639. Pubmed Central PMCID: 3918721CrossRefPubMedPubMedCentral Krstic J, Santibanez JF. Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. TheScientificWorldJOURNAL. 2014;2014:521754. PubMed PMID: 24578639. Pubmed Central PMCID: 3918721CrossRefPubMedPubMedCentral
37.
go back to reference Zhu Y, Lee C, Shen F, Du R, Young WL, Yang GY. Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke. 2005;36(7):1533–7. PubMed PMID: 15947259CrossRefPubMed Zhu Y, Lee C, Shen F, Du R, Young WL, Yang GY. Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke. 2005;36(7):1533–7. PubMed PMID: 15947259CrossRefPubMed
38.
go back to reference Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, Nishikawa R, et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol. 2005;166(3):877–90. PubMed PMID: 15743799. Pubmed Central PMCID: 1602359CrossRefPubMedPubMedCentral Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, Nishikawa R, et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol. 2005;166(3):877–90. PubMed PMID: 15743799. Pubmed Central PMCID: 1602359CrossRefPubMedPubMedCentral
39.
go back to reference Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60. PubMed PMID: 12778163CrossRefPubMed Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60. PubMed PMID: 12778163CrossRefPubMed
40.
go back to reference Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84. PubMed PMID: 14534577CrossRefPubMed Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84. PubMed PMID: 14534577CrossRefPubMed
41.
go back to reference Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994;127(6 Pt 2):2021–36. PubMed PMID: 7806579. Pubmed Central PMCID: 2120317.CrossRefPubMed Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994;127(6 Pt 2):2021–36. PubMed PMID: 7806579. Pubmed Central PMCID: 2120317.CrossRefPubMed
42.
go back to reference Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P. TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci. 1999;112(Pt 24):4557–68. PubMed PMID: 10574705PubMed Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P. TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci. 1999;112(Pt 24):4557–68. PubMed PMID: 10574705PubMed
43.
go back to reference Kim ES, Kim MS, Moon A. TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol. 2004;25(5):1375–82. PubMed PMID: 15492828PubMed Kim ES, Kim MS, Moon A. TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol. 2004;25(5):1375–82. PubMed PMID: 15492828PubMed
44.
go back to reference Oshimori N, Oristian D, Fuchs E. TGF-beta promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell. 2015;160(5):963–76. PubMed PMID: 25723170. Pubmed Central PMCID: 4509607CrossRefPubMedPubMedCentral Oshimori N, Oristian D, Fuchs E. TGF-beta promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell. 2015;160(5):963–76. PubMed PMID: 25723170. Pubmed Central PMCID: 4509607CrossRefPubMedPubMedCentral
Metadata
Title
Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma
Authors
Anderson H. Webb
Bradley T. Gao
Zachary K. Goldsmith
Andrew S. Irvine
Nabil Saleh
Ryan P. Lee
Justin B. Lendermon
Rajini Bheemreddy
Qiuhua Zhang
Rachel C. Brennan
Dianna Johnson
Jena J. Steinle
Matthew W. Wilson
Vanessa M. Morales-Tirado
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3418-y

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine