Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Oxalate induces breast cancer

Authors: Andrés M. Castellaro, Alfredo Tonda, Hugo H. Cejas, Héctor Ferreyra, Beatriz L. Caputto, Oscar A. Pucci, German A. Gil

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Microcalcifications can be the early and only presenting sign of breast cancer. One shared characteristic of breast cancer is the appearance of mammographic mammary microcalcifications that can routinely be used to detect breast cancer in its initial stages, which is of key importance due to the possibility that early detection allows the application of more conservative therapies for a better patient outcome. The mechanism by which mammary microcalcifications are formed is still largely unknown but breast cancers presenting microcalcifications are more often associated with a poorer prognosis.

Methods

We combined Capillary Electrochromatography, histology, and gene expression (qRT-PCR) to analyze patient-matched normal breast tissue vs. breast tumor. Potential carcinogenicity of oxalate was tested by its inoculation into mice. All data were subjected to statistical analysis.

Results

To study the biological significance of oxalates within the breast tumor microenvironment, we measured oxalate concentration in both human breast tumor tissues and adjoining non-pathological breast tissues. We found that all tested breast tumor tissues contain a higher concentration of oxalates than their counterpart non-pathological breast tissue. Moreover, it was established that oxalate induces proliferation of breast cells and stimulates the expression of a pro-tumorigenic gene c-fos. Furthermore, oxalate generates highly malignant and undifferentiated tumors when it was injected into the mammary fatpad in female mice, but not when injected into their back, indicating that oxalate does not induce cancer formation in all types of tissues. Moreover, neither human kidney-epithelial cells nor mouse fibroblast cells proliferate when are treated with oxalate.

Conclusions

We found that the chronic exposure of breast epithelial cells to oxalate promotes the transformation of breast cells from normal to tumor cells, inducing the expression of a proto-oncogen as c-fos and proliferation in breast cancer cells. Furthermore, oxalate has a carcinogenic effect when injected into the mammary fatpad in mice, generating highly malignant and undifferentiated tumors with the characteristics of fibrosarcomas of the breast. As oxalates seem to promote these differences, it is expected that a significant reduction in the incidence of breast cancer tumors could be reached if it were possible to control oxalate production or its carcinogenic activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference DeSantis C, Lin C, Mariotto A, Siegel R, Stein K, Kramer J, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64(4):252–71.CrossRefPubMed DeSantis C, Lin C, Mariotto A, Siegel R, Stein K, Kramer J, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64(4):252–71.CrossRefPubMed
2.
go back to reference Siegel R, Ma J, Zou Z, Jemal A. Global cancer statistics. CA Cancer J Clin. 2014;61(2):69–90. Siegel R, Ma J, Zou Z, Jemal A. Global cancer statistics. CA Cancer J Clin. 2014;61(2):69–90.
3.
go back to reference Hofvind S, Iversen BF, Eriksen L, Styr BM, Kjellevold K, Kurz KD. Mammographic morphology and distribution of calcifications in ductal carcinoma in situ diagnosed in organized screening. Acta Radiol. 2011;52(5):481–7.CrossRefPubMed Hofvind S, Iversen BF, Eriksen L, Styr BM, Kjellevold K, Kurz KD. Mammographic morphology and distribution of calcifications in ductal carcinoma in situ diagnosed in organized screening. Acta Radiol. 2011;52(5):481–7.CrossRefPubMed
4.
go back to reference Holme TC, Reis MM, Thompson A, Robertson A, Parham D, Hickman P, et al. Is mammographic microcalcification of biological significance? Eur J Surg Oncol. 1993;19(3):250–3.PubMed Holme TC, Reis MM, Thompson A, Robertson A, Parham D, Hickman P, et al. Is mammographic microcalcification of biological significance? Eur J Surg Oncol. 1993;19(3):250–3.PubMed
5.
go back to reference Seo BK, Pisano ED, Kuzimak CM, Koomen M, Pavic D, Lee Y, et al. Correlation of HER-2/neu overexpression with mammography and age distribution in primary breast carcinomas. Acad Radiol. 2006;13(10):1211–8.CrossRefPubMed Seo BK, Pisano ED, Kuzimak CM, Koomen M, Pavic D, Lee Y, et al. Correlation of HER-2/neu overexpression with mammography and age distribution in primary breast carcinomas. Acad Radiol. 2006;13(10):1211–8.CrossRefPubMed
6.
go back to reference Wang X, Chao L, Chen L, Tian B, Ma G, Zang Y, et al. Correlation of mammographic calcifications with Her-2/neu overexpression in primary breast carcinomas. J Digit Imaging. 2008;21(2):170–6.CrossRefPubMedPubMedCentral Wang X, Chao L, Chen L, Tian B, Ma G, Zang Y, et al. Correlation of mammographic calcifications with Her-2/neu overexpression in primary breast carcinomas. J Digit Imaging. 2008;21(2):170–6.CrossRefPubMedPubMedCentral
7.
go back to reference Frappart L, Boudeulle M, Boumendil J, Lin HC, Martinon I, Palayer C, et al. Structure and composition of microcalcifications in benign and malignant lesions of the breast: study by light microscopy, transmission and scanning electron microscopy, microprobe analysis, and X-ray diffraction. Hum Pathol. 1984;15(9):880–9.CrossRefPubMed Frappart L, Boudeulle M, Boumendil J, Lin HC, Martinon I, Palayer C, et al. Structure and composition of microcalcifications in benign and malignant lesions of the breast: study by light microscopy, transmission and scanning electron microscopy, microprobe analysis, and X-ray diffraction. Hum Pathol. 1984;15(9):880–9.CrossRefPubMed
8.
go back to reference Singh N, Theaker J. Calcium Oxalate Crystals (Weddellite) within the secretions of ductal carcinoma in situ : a rare phenomenon. J Clin Pathol. 1999;52(2):145–6.CrossRefPubMedPubMedCentral Singh N, Theaker J. Calcium Oxalate Crystals (Weddellite) within the secretions of ductal carcinoma in situ : a rare phenomenon. J Clin Pathol. 1999;52(2):145–6.CrossRefPubMedPubMedCentral
9.
go back to reference Gonzalez JE, Caldwell RG, Valaitis J. Calcium oxalate crystals in the breast. Pathology and significance. Am J Surg Pathol. 1991;15(6):586–91.CrossRefPubMed Gonzalez JE, Caldwell RG, Valaitis J. Calcium oxalate crystals in the breast. Pathology and significance. Am J Surg Pathol. 1991;15(6):586–91.CrossRefPubMed
10.
go back to reference Erdener Özer MD, Tülay Canda MD, Pınar Balcı MD, Özcan Gökçe MD. Calcium Oxalate Crystals in Benign Cyst Fluid from the Breast. Acta Cytol. 2008;99:0281–7. Erdener Özer MD, Tülay Canda MD, Pınar Balcı MD, Özcan Gökçe MD. Calcium Oxalate Crystals in Benign Cyst Fluid from the Breast. Acta Cytol. 2008;99:0281–7.
11.
go back to reference Cox RF, Hernandez-Santana A, Ramdass S, McMahon G, Harmey JH, Morgan MP. Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation. Br J Cancer. 2012;106(3):525–37.CrossRefPubMedPubMedCentral Cox RF, Hernandez-Santana A, Ramdass S, McMahon G, Harmey JH, Morgan MP. Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation. Br J Cancer. 2012;106(3):525–37.CrossRefPubMedPubMedCentral
12.
go back to reference Scimeca M, Giannini E, Antonacci C, Pistolese C, Spagnoli L, Bonanno L. Microcalcifications in breast cancer: an active phenomenon mediated by epithelial cells with mesenchymal characteristics. BMC Cancer. 2014;14:286.CrossRefPubMedPubMedCentral Scimeca M, Giannini E, Antonacci C, Pistolese C, Spagnoli L, Bonanno L. Microcalcifications in breast cancer: an active phenomenon mediated by epithelial cells with mesenchymal characteristics. BMC Cancer. 2014;14:286.CrossRefPubMedPubMedCentral
13.
go back to reference ÇalişKan M. The Metabolism of Oxalic Acid. Turk J Zool. 1998;24(2000):103–6. ÇalişKan M. The Metabolism of Oxalic Acid. Turk J Zool. 1998;24(2000):103–6.
14.
go back to reference ÇalişKan M, Subasi IE, Atak I, Erdem H, Sisik A, Ucankale H, et al. Hydatid cyst of the breast. Breast J. 2011;17(2):203–4.CrossRefPubMed ÇalişKan M, Subasi IE, Atak I, Erdem H, Sisik A, Ucankale H, et al. Hydatid cyst of the breast. Breast J. 2011;17(2):203–4.CrossRefPubMed
15.
go back to reference Panjwani P, Tirumalae R, Emmanuel A. Calcium oxalate crystals--an unexpected finding in a breast aspirate. Diagn Cytopathol. 2011;39(5):349–51.CrossRefPubMed Panjwani P, Tirumalae R, Emmanuel A. Calcium oxalate crystals--an unexpected finding in a breast aspirate. Diagn Cytopathol. 2011;39(5):349–51.CrossRefPubMed
16.
go back to reference Robertson DS. The function of oxalic acid in the human metabolism. Clin Chem Lab Med. 2011;49(9):1405–12.PubMed Robertson DS. The function of oxalic acid in the human metabolism. Clin Chem Lab Med. 2011;49(9):1405–12.PubMed
17.
18.
go back to reference Baker PR, Cramer SD, Martha K, Assimos DG, Holmes RP. Glycolate and glyoxylate metabolism in HepG2 cells. Am J Physiol Cell Physiol. 2004;287:C1359–65.CrossRefPubMed Baker PR, Cramer SD, Martha K, Assimos DG, Holmes RP. Glycolate and glyoxylate metabolism in HepG2 cells. Am J Physiol Cell Physiol. 2004;287:C1359–65.CrossRefPubMed
19.
go back to reference Koul S, Khandrika L, Pshak TJ, Iguchi N, Pal M, Steffan JJ, et al. Oxalate upregulates expression of IL-2R and activates IL-2R signaling in HK-2 cells, a line of human renal epithelial cells. Am J Physiol Renal Physiol. 2014;306:1039–46.CrossRef Koul S, Khandrika L, Pshak TJ, Iguchi N, Pal M, Steffan JJ, et al. Oxalate upregulates expression of IL-2R and activates IL-2R signaling in HK-2 cells, a line of human renal epithelial cells. Am J Physiol Renal Physiol. 2014;306:1039–46.CrossRef
20.
go back to reference Janet R, Durham M, Fechner RE. The histologic spectrum of apocrine lesions of the breast. Pathol Patterns Rev. 2000;113 Suppl 1:3–18. Janet R, Durham M, Fechner RE. The histologic spectrum of apocrine lesions of the breast. Pathol Patterns Rev. 2000;113 Suppl 1:3–18.
21.
go back to reference Koul S, Khandrika L, Meacham RB, Koul HK. Genome wide analysis of differentially expressed genes in HK-2 cells, a Line of human kidney epithelial cells in response to oxalate. PLoS One. 2012;7(9):e43886.CrossRefPubMedPubMedCentral Koul S, Khandrika L, Meacham RB, Koul HK. Genome wide analysis of differentially expressed genes in HK-2 cells, a Line of human kidney epithelial cells in response to oxalate. PLoS One. 2012;7(9):e43886.CrossRefPubMedPubMedCentral
22.
go back to reference Koul S, Chaturved LS, Sekhon A, Bhandari A, Menon M, Koul HK. Effects of oxalate on the re-initiation of DNA synthesis in LLC-PK1 cells do not involve p42/44 MAP kinase activation. Kidney Int. 2002;61(2):525–33.CrossRefPubMed Koul S, Chaturved LS, Sekhon A, Bhandari A, Menon M, Koul HK. Effects of oxalate on the re-initiation of DNA synthesis in LLC-PK1 cells do not involve p42/44 MAP kinase activation. Kidney Int. 2002;61(2):525–33.CrossRefPubMed
23.
go back to reference Maroni PD, Koul S, Meacham RB, Chandhoke PS, Koul HK. Effects of oxalate on IMCD cells: a line of mouse inner medullary collecting duct cells. Ann N Y Acad Sci. 2004;1030:144–9.CrossRefPubMedPubMedCentral Maroni PD, Koul S, Meacham RB, Chandhoke PS, Koul HK. Effects of oxalate on IMCD cells: a line of mouse inner medullary collecting duct cells. Ann N Y Acad Sci. 2004;1030:144–9.CrossRefPubMedPubMedCentral
24.
go back to reference Koul S, Huang M, Bhat S, Maroni P, Meacham RB, Koul HK. Oxalate exposure provokes HSP 70 response in LLC-PK1 cells, a line of renal epithelial cells: protective role of HSP 70 against oxalate toxicity. Urol Res. 2008;36(1):1–10.CrossRefPubMed Koul S, Huang M, Bhat S, Maroni P, Meacham RB, Koul HK. Oxalate exposure provokes HSP 70 response in LLC-PK1 cells, a line of renal epithelial cells: protective role of HSP 70 against oxalate toxicity. Urol Res. 2008;36(1):1–10.CrossRefPubMed
25.
go back to reference Huang MY, Chaturvedi LS, Koul S, Koul HK. Oxalate stimulates IL-6 production in HK-2 cells, a line of human renal proximal tubular epithelial cells. Kidney Int. 2005;68:497–503.CrossRefPubMed Huang MY, Chaturvedi LS, Koul S, Koul HK. Oxalate stimulates IL-6 production in HK-2 cells, a line of human renal proximal tubular epithelial cells. Kidney Int. 2005;68:497–503.CrossRefPubMed
26.
go back to reference Peters MS, Lehman JS, Comfere NI. Dermatopathology of the female breast. Am J Dermatopathol. 2013;35(3):289–304. quiz 305–287.CrossRefPubMed Peters MS, Lehman JS, Comfere NI. Dermatopathology of the female breast. Am J Dermatopathol. 2013;35(3):289–304. quiz 305–287.CrossRefPubMed
27.
go back to reference Gil GA, Silvestre DC, Tomasini N, Bussolino DF, Caputto BL. Controlling cytoplasmic c-Fos controls tumor growth in the peripheral and central nervous system. Neurochem Res. 2012;37(6):1364–71.CrossRefPubMed Gil GA, Silvestre DC, Tomasini N, Bussolino DF, Caputto BL. Controlling cytoplasmic c-Fos controls tumor growth in the peripheral and central nervous system. Neurochem Res. 2012;37(6):1364–71.CrossRefPubMed
29.
go back to reference Bussolino DF, Guido ME, Gil GA, Borioli GA, Renner ML, Grabois VR, et al. c-Fos associates with the endoplasmic reticulum and activates phospholipid metabolism. FASEB J. 2001;15(3):556–8.PubMed Bussolino DF, Guido ME, Gil GA, Borioli GA, Renner ML, Grabois VR, et al. c-Fos associates with the endoplasmic reticulum and activates phospholipid metabolism. FASEB J. 2001;15(3):556–8.PubMed
30.
go back to reference Caputto BL, Cardozo Gizzi AM, Gil GA. c-Fos: an AP-1 transcription factor with an additional cytoplasmic, non-genomic lipid synthesis activation capacity. Biochim Biophys Acta. 2014;1841(9):1241–6.CrossRefPubMed Caputto BL, Cardozo Gizzi AM, Gil GA. c-Fos: an AP-1 transcription factor with an additional cytoplasmic, non-genomic lipid synthesis activation capacity. Biochim Biophys Acta. 2014;1841(9):1241–6.CrossRefPubMed
31.
go back to reference Gil GA, Bussolino DF, Portal MM, Alfonso Pecchio A, Renner ML, Borioli GA, et al. c-Fos activated phospholipid synthesis is required for neurite elongation in differentiating PC12 cells. Mol Biol Cell. 2004;15(4):1881–94.CrossRefPubMedPubMedCentral Gil GA, Bussolino DF, Portal MM, Alfonso Pecchio A, Renner ML, Borioli GA, et al. c-Fos activated phospholipid synthesis is required for neurite elongation in differentiating PC12 cells. Mol Biol Cell. 2004;15(4):1881–94.CrossRefPubMedPubMedCentral
32.
go back to reference Chaturvedi LS, Koul S, Sekhon A, Bhandari A, Menon M, Koul HK. Oxalate selectively activates p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signal transduction pathways in renal epithelial cells. J Biol Chem. 2002;277(15):13321–30.CrossRefPubMed Chaturvedi LS, Koul S, Sekhon A, Bhandari A, Menon M, Koul HK. Oxalate selectively activates p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signal transduction pathways in renal epithelial cells. J Biol Chem. 2002;277(15):13321–30.CrossRefPubMed
33.
go back to reference Liska V, Holubec Jr L, Treska V, Vrzalova J, Skalicky T, Sutnar A, et al. Evaluation of tumour markers as differential diagnostic tool in patients with suspicion of liver metastases from breast cancer. Anticancer Res. 2011;31(4):1447–51.PubMed Liska V, Holubec Jr L, Treska V, Vrzalova J, Skalicky T, Sutnar A, et al. Evaluation of tumour markers as differential diagnostic tool in patients with suspicion of liver metastases from breast cancer. Anticancer Res. 2011;31(4):1447–51.PubMed
34.
go back to reference Motrich RD, Castro GM, Caputto BL. Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm. PLoS One. 2013;8(1):e53211.CrossRefPubMedPubMedCentral Motrich RD, Castro GM, Caputto BL. Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm. PLoS One. 2013;8(1):e53211.CrossRefPubMedPubMedCentral
35.
go back to reference Attia MA, Weiss DW. Immunology of spontaneous mammary carcinomas in mice. V. Acquired tumor resistance and enhancement in strain A mice infected with mammary tumor virus. Cancer Res. 1996;8:1787–800. Attia MA, Weiss DW. Immunology of spontaneous mammary carcinomas in mice. V. Acquired tumor resistance and enhancement in strain A mice infected with mammary tumor virus. Cancer Res. 1996;8:1787–800.
Metadata
Title
Oxalate induces breast cancer
Authors
Andrés M. Castellaro
Alfredo Tonda
Hugo H. Cejas
Héctor Ferreyra
Beatriz L. Caputto
Oscar A. Pucci
German A. Gil
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1747-2

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine