Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection

Authors: Zuoli Dong, Naiqian Zhang, Chun Li, Haiyun Wang, Yun Fang, Jun Wang, Xiaoqi Zheng

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

An enduring challenge in personalized medicine is to select right drug for individual patients. Testing drugs on patients in large clinical trials is one way to assess their efficacy and toxicity, but it is impractical to test hundreds of drugs currently under development. Therefore the preclinical prediction model is highly expected as it enables prediction of drug response to hundreds of cell lines in parallel.

Methods

Recently, two large-scale pharmacogenomic studies screened multiple anticancer drugs on over 1000 cell lines in an effort to elucidate the response mechanism of anticancer drugs. To this aim, we here used gene expression features and drug sensitivity data in Cancer Cell Line Encyclopedia (CCLE) to build a predictor based on Support Vector Machine (SVM) and a recursive feature selection tool. Robustness of our model was validated by cross-validation and an independent dataset, the Cancer Genome Project (CGP).

Results

Our model achieved good cross validation performance for most drugs in the Cancer Cell Line Encyclopedia (≥80 % accuracy for 10 drugs, ≥ 75 % accuracy for 19 drugs). Independent tests on eleven common drugs between CCLE and CGP achieved satisfactory performance for three of them, i.e., AZD6244, Erlotinib and PD-0325901, using expression levels of only twelve, six and seven genes, respectively.

Conclusions

These results suggest that drug response could be effectively predicted from genomic features. Our model could be applied to predict drug response for some certain drugs and potentially play a complementary role in personalized medicine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Bio. 2006;7(3):211–24.CrossRef Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Bio. 2006;7(3):211–24.CrossRef
3.
go back to reference Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity (vol 483, pg 603, 2012). Nature. 2012;492(7428):290–290.CrossRef Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity (vol 483, pg 603, 2012). Nature. 2012;492(7428):290–290.CrossRef
4.
go back to reference Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483(7391):570–U587.CrossRefPubMedPubMedCentral Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483(7391):570–U587.CrossRefPubMedPubMedCentral
5.
go back to reference Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6(10):813–23.CrossRefPubMed Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6(10):813–23.CrossRefPubMed
6.
go back to reference Heiser LM, Jwang N, Talcott CL, Laderoute KR, Knapp M, Guan YH, Hu Z, Ziyad S, Weber BL, Laquerre S, et al. Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Genome Biol. 2009;10(3). Heiser LM, Jwang N, Talcott CL, Laderoute KR, Knapp M, Guan YH, Hu Z, Ziyad S, Weber BL, Laquerre S, et al. Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Genome Biol. 2009;10(3).
7.
go back to reference Kutalik Z, Beckmann JS, Bergmann S. A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nat Biotechnol. 2008;26(5):531–9.CrossRefPubMed Kutalik Z, Beckmann JS, Bergmann S. A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nat Biotechnol. 2008;26(5):531–9.CrossRefPubMed
8.
go back to reference Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, Sage J, Butte AJ. Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data (vol 3, 96ra77, 2011). Sci Transl Med. 2011;3(102). Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, Sage J, Butte AJ. Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data (vol 3, 96ra77, 2011). Sci Transl Med. 2011;3(102).
9.
go back to reference Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf U, Lee JK, Reinhold WO, Weinstein JN, et al. Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A. 2001;98(19):10787–92.CrossRefPubMedPubMedCentral Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf U, Lee JK, Reinhold WO, Weinstein JN, et al. Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A. 2001;98(19):10787–92.CrossRefPubMedPubMedCentral
10.
go back to reference Riddick G, Song H, Ahn S, Walling J, Borges-Rivera D, Zhang W, Fine HA. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics. 2011;27(2):220–4.CrossRefPubMed Riddick G, Song H, Ahn S, Walling J, Borges-Rivera D, Zhang W, Fine HA. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics. 2011;27(2):220–4.CrossRefPubMed
11.
go back to reference Lee JK, Havaleshko DM, Cho H, Weinstein JN, Kaldjian EP, Karpovich J, Grimshaw A, Theodorescu D. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc Natl Acad Sci U S A. 2007;104(32):13086–91.CrossRefPubMedPubMedCentral Lee JK, Havaleshko DM, Cho H, Weinstein JN, Kaldjian EP, Karpovich J, Grimshaw A, Theodorescu D. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc Natl Acad Sci U S A. 2007;104(32):13086–91.CrossRefPubMedPubMedCentral
12.
go back to reference Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM, Pei D, Cheng C, Pui CH, Relling MV, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med. 2004;351(6):533–42.CrossRefPubMed Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM, Pei D, Cheng C, Pui CH, Relling MV, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med. 2004;351(6):533–42.CrossRefPubMed
13.
go back to reference Haibe-Kains B, El-Hachem N, Birkbak NJ, Jin AC, Beck AH, Aerts HJWL, Quackenbush J. Inconsistency in large pharmacogenomic studies. Nature. 2013;504(7480):389.CrossRefPubMedPubMedCentral Haibe-Kains B, El-Hachem N, Birkbak NJ, Jin AC, Beck AH, Aerts HJWL, Quackenbush J. Inconsistency in large pharmacogenomic studies. Nature. 2013;504(7480):389.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Glaysher S, Yiannakis D, Gabriel FG, Johnson P, Polak ME, Knight LA, Goldthorpe Z, Peregrin K, Gyi M, Modi P, Rahamim J, Smith ME, Amer K, Addis B, Poole M, Narayanan A, Gulliford TJ , Andreotti PE, Cree IA. Resistance gene expression determines the in vitro chemosensitivity of non-small cell lung cancer (NSCLC). BMC Cancer. 2009;9(300):V9. Glaysher S, Yiannakis D, Gabriel FG, Johnson P, Polak ME, Knight LA, Goldthorpe Z, Peregrin K, Gyi M, Modi P, Rahamim J, Smith ME, Amer K, Addis B, Poole M, Narayanan A, Gulliford TJ , Andreotti PE, Cree IA. Resistance gene expression determines the in vitro chemosensitivity of non-small cell lung cancer (NSCLC). BMC Cancer. 2009;9(300):V9.
17.
go back to reference Geeleher P, Cox NJ, Huang SR, et al. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014;15:R47.CrossRefPubMedPubMedCentral Geeleher P, Cox NJ, Huang SR, et al. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014;15:R47.CrossRefPubMedPubMedCentral
18.
go back to reference Polat K, Güneş S. A new feature method on classification of medical datasets: Kernel F-score feature selection. ESWA. 2009;36(7):10367–73. Polat K, Güneş S. A new feature method on classification of medical datasets: Kernel F-score feature selection. ESWA. 2009;36(7):10367–73.
19.
go back to reference Ding S. Feature Selection based F-score and ACO Algorithm in Support Vector Machine. Knowledge Acquisition and Modeling. 2009;1:19–23. Ding S. Feature Selection based F-score and ACO Algorithm in Support Vector Machine. Knowledge Acquisition and Modeling. 2009;1:19–23.
20.
go back to reference Anaissi A, Kennedy PJ, Goyal M, Catchpoole DR. A balanced iterative random forest for gene selection from microarray data. BMC Bioinformatics. 2013;14:261.CrossRefPubMedPubMedCentral Anaissi A, Kennedy PJ, Goyal M, Catchpoole DR. A balanced iterative random forest for gene selection from microarray data. BMC Bioinformatics. 2013;14:261.CrossRefPubMedPubMedCentral
21.
go back to reference Jang IS, Neto EC, Guinney J, Friend SH, Margolin AA. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. PSB. 2014;19:63–74. Jang IS, Neto EC, Guinney J, Friend SH, Margolin AA. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. PSB. 2014;19:63–74.
22.
go back to reference Papillon-Cavanagh S, De Jay N, Hachem N, Olsen C, Bontempi G, Aerts HJ. QuackenbushJ, Haibe-Kains B: Comparison and validation of genomic predictors for anticancer drug sensitivity. J Am Med InformAssoc. 2013;20(4):597–602. Papillon-Cavanagh S, De Jay N, Hachem N, Olsen C, Bontempi G, Aerts HJ. QuackenbushJ, Haibe-Kains B: Comparison and validation of genomic predictors for anticancer drug sensitivity. J Am Med InformAssoc. 2013;20(4):597–602.
23.
go back to reference Fong CW, Chua MS, McKie AB, Ling SHM, Mason L, Li R, Lo TL, Leung HY, So SKS, et al. Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res. 2006;66(4):2048–58.CrossRefPubMed Fong CW, Chua MS, McKie AB, Ling SHM, Mason L, Li R, Lo TL, Leung HY, So SKS, et al. Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res. 2006;66(4):2048–58.CrossRefPubMed
24.
go back to reference Costa VL, Henrique R, Danielsen SA, Duarte-Pereira S, Eknaes M, Skotheim RI, Rodrigues A, Magalhaes JS, Oliveira J, Lothe RA, et al. Three Epigenetic Biomarkers, GDF15, TMEFF2, and VIM, Accurately Predict Bladder Cancer from DNA-Based Analyses of Urine Samples. Clin Cancer Res. 2010;16(23):5842–51.CrossRefPubMed Costa VL, Henrique R, Danielsen SA, Duarte-Pereira S, Eknaes M, Skotheim RI, Rodrigues A, Magalhaes JS, Oliveira J, Lothe RA, et al. Three Epigenetic Biomarkers, GDF15, TMEFF2, and VIM, Accurately Predict Bladder Cancer from DNA-Based Analyses of Urine Samples. Clin Cancer Res. 2010;16(23):5842–51.CrossRefPubMed
25.
go back to reference Lian ZQ, Wang Q, Li WP, Zhang AQ, Wu L. Screening of significantly hypermethylated genes in breast cancer using microarray-based methylated-CpG island recovery assay and identification of their expression levels. Int J Oncol. 2012;41(2):629–38.PubMed Lian ZQ, Wang Q, Li WP, Zhang AQ, Wu L. Screening of significantly hypermethylated genes in breast cancer using microarray-based methylated-CpG island recovery assay and identification of their expression levels. Int J Oncol. 2012;41(2):629–38.PubMed
27.
go back to reference Genuer R, Poggi J-M, Tuleau-Malot C. Variable selection using Random Forests. Pattern Recognition Letters, Elsevier. 2010;31(14):2225–36.CrossRef Genuer R, Poggi J-M, Tuleau-Malot C. Variable selection using Random Forests. Pattern Recognition Letters, Elsevier. 2010;31(14):2225–36.CrossRef
28.
go back to reference Han L, Embrechts MJ, Szymanski B, Sternickel K, Ross A. Random Forests Feature Selection with Kernel Partial Least Squares: Detecting Ischemia from MagnetoCardiograms. ESANN 2006,V1:221-226. Han L, Embrechts MJ, Szymanski B, Sternickel K, Ross A. Random Forests Feature Selection with Kernel Partial Least Squares: Detecting Ischemia from MagnetoCardiograms. ESANN 2006,V1:221-226.
29.
go back to reference Costello JC, Heiser LM, Georgii E, Gonen M, Menden MP, Wang NJ, Bansal M, Ammad-Ud-Din M, Hintsanen P, Khan SA, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32(12):1202–12.CrossRefPubMedPubMedCentral Costello JC, Heiser LM, Georgii E, Gonen M, Menden MP, Wang NJ, Bansal M, Ammad-Ud-Din M, Hintsanen P, Khan SA, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32(12):1202–12.CrossRefPubMedPubMedCentral
Metadata
Title
Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection
Authors
Zuoli Dong
Naiqian Zhang
Chun Li
Haiyun Wang
Yun Fang
Jun Wang
Xiaoqi Zheng
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1492-6

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine