Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

A functional in vitro model of heterotypic interactions reveals a role for interferon-positive carcinoma associated fibroblasts in breast cancer

Authors: Abdel Nasser Hosein, Julie Livingstone, Marguerite Buchanan, James F Reid, Michael Hallett, Mark Basik

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Cancer-associated fibroblasts (CAFs) play an important role in breast cancer pathogenesis by paracrine regulation of breast cancer cell biology. Several in vitro and mouse models have characterized the role of cell contact and cytokine molecules mediating this relationship, although few reports have used human CAFs from breast tumors.

Methods

Primary breast CAF cultures were established and gene expression profiles analysed in order to guide subsequent co-culture models. We used a combination of colorimetric proliferation assays and gene expression profiling to determine the effect of CAFs on the MCF-7 breast cancer cell in an indirect co-culture system.

Results

Using gene expression profiling, we found that a subgroup of breast CAFs are positive for a type one interferon response, confirming previous reports of an activated type one interferon response in whole tumor datasets. Interferon positive breast cancer patients show a poor prognostic outcome in an independent microarray dataset. In addition, CAFs positive for the type one interferon response promoted the growth of the MCF-7 breast cancer cell line in an indirect co-culture model. The addition of a neutralizing antibody against the ligand mediating the type one response in fibroblasts, interferon-β, reverted this co-culture phenotype. CAFs not expressing the interferon response genes also promoted the growth of the MCF-7 breast cancer cell line but this phenotype was independent of the type one fibroblast interferon ligand.

Conclusions

Primary breast CAFs show inter-patient molecular heterogeneity as evidenced by interferon response gene elements activated in a subgroup of CAFs, which result in paracrine pro-proliferative effects in a breast cancer cell line co-culture model.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14(5):518–27.CrossRefPubMed Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14(5):518–27.CrossRefPubMed
4.
go back to reference Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 2009;15(1):68–74.CrossRefPubMed Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 2009;15(1):68–74.CrossRefPubMed
6.
go back to reference Madar S, Harel E, Goldstein I, Stein Y, Kogan-Sakin I, Kamer I, et al. Mutant p53 attenuates the anti-tumorigenic activity of fibroblasts-secreted interferon beta. PLoS One. 2013;8(4):e61353.CrossRefPubMedPubMedCentral Madar S, Harel E, Goldstein I, Stein Y, Kogan-Sakin I, Kamer I, et al. Mutant p53 attenuates the anti-tumorigenic activity of fibroblasts-secreted interferon beta. PLoS One. 2013;8(4):e61353.CrossRefPubMedPubMedCentral
7.
go back to reference Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51.CrossRefPubMed Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51.CrossRefPubMed
8.
go back to reference Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.CrossRefPubMed Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.CrossRefPubMed
9.
go back to reference Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. 2010;107(46):20009–14.CrossRefPubMedPubMedCentral Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. 2010;107(46):20009–14.CrossRefPubMedPubMedCentral
10.
go back to reference Adams EF, Newton CJ, Braunsberg H, Shaikh N, Ghilchik M, James VH. Effects of human breast fibroblasts on growth and 17 beta-estradiol dehydrogenase activity of MCF-7 cells in culture. Breast Cancer Res Treat. 1988;11(2):165–72.CrossRefPubMed Adams EF, Newton CJ, Braunsberg H, Shaikh N, Ghilchik M, James VH. Effects of human breast fibroblasts on growth and 17 beta-estradiol dehydrogenase activity of MCF-7 cells in culture. Breast Cancer Res Treat. 1988;11(2):165–72.CrossRefPubMed
11.
go back to reference van Roozendaal KE, Klijn JG, van Ooijen B, Claassen C, Eggermont AM, Henzen-Logmans SC, et al. Differential regulation of breast tumor cell proliferation by stromal fibroblasts of various breast tissue sources. Int J Cancer. 1996;65(1):120–5.CrossRefPubMed van Roozendaal KE, Klijn JG, van Ooijen B, Claassen C, Eggermont AM, Henzen-Logmans SC, et al. Differential regulation of breast tumor cell proliferation by stromal fibroblasts of various breast tissue sources. Int J Cancer. 1996;65(1):120–5.CrossRefPubMed
12.
go back to reference Dong-Le Bourhis X, Berthois Y, Millot G, Degeorges A, Sylvi M, Martin PM, et al. Effect of stromal and epithelial cells derived from normal and tumorous breast tissue on the proliferation of human breast cancer cell lines in co-culture. Int J Cancer. 1997;71(1):42–8.CrossRefPubMed Dong-Le Bourhis X, Berthois Y, Millot G, Degeorges A, Sylvi M, Martin PM, et al. Effect of stromal and epithelial cells derived from normal and tumorous breast tissue on the proliferation of human breast cancer cell lines in co-culture. Int J Cancer. 1997;71(1):42–8.CrossRefPubMed
13.
go back to reference Buess M, Nuyten DS, Hastie T, Nielsen T, Pesich R, Brown PO. Characterization of heterotypic interaction effects in vitro to deconvolute global gene expression profiles in cancer. Genome Biol. 2007;8(9):R191.CrossRefPubMedPubMedCentral Buess M, Nuyten DS, Hastie T, Nielsen T, Pesich R, Brown PO. Characterization of heterotypic interaction effects in vitro to deconvolute global gene expression profiles in cancer. Genome Biol. 2007;8(9):R191.CrossRefPubMedPubMedCentral
14.
go back to reference van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.CrossRefPubMed van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.CrossRefPubMed
15.
go back to reference Hosein AN, Wu M, Arcand SL, Lavallee S, Hebert J, Tonin PN, et al. Breast carcinoma-associated fibroblasts rarely contain p53 mutations or chromosomal aberrations. Cancer Res. 2010;70(14):5770–7.CrossRefPubMed Hosein AN, Wu M, Arcand SL, Lavallee S, Hebert J, Tonin PN, et al. Breast carcinoma-associated fibroblasts rarely contain p53 mutations or chromosomal aberrations. Cancer Res. 2010;70(14):5770–7.CrossRefPubMed
16.
go back to reference Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.CrossRefPubMedPubMedCentral Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.CrossRefPubMedPubMedCentral
17.
go back to reference Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–21.CrossRefPubMedPubMedCentral Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–21.CrossRefPubMedPubMedCentral
18.
go back to reference Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.CrossRefPubMed Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.CrossRefPubMed
19.
go back to reference Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2(2):E7.CrossRefPubMedPubMedCentral Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2(2):E7.CrossRefPubMedPubMedCentral
20.
go back to reference Lee SW, Tomasetto C, Swisshelm K, Keyomarsi K, Sager R. Down-regulation of a member of the S100 gene family in mammary carcinoma cells and reexpression by azadeoxycytidine treatment. Proc Natl Acad Sci U S A. 1992;89(6):2504–8.CrossRefPubMedPubMedCentral Lee SW, Tomasetto C, Swisshelm K, Keyomarsi K, Sager R. Down-regulation of a member of the S100 gene family in mammary carcinoma cells and reexpression by azadeoxycytidine treatment. Proc Natl Acad Sci U S A. 1992;89(6):2504–8.CrossRefPubMedPubMedCentral
21.
go back to reference Liu D, Rudland PS, Sibson DR, Platt-Higgins A, Barraclough R. Expression of calcium-binding protein S100A2 in breast lesions. Br J Cancer. 2000;83(11):1473–9.CrossRefPubMedPubMedCentral Liu D, Rudland PS, Sibson DR, Platt-Higgins A, Barraclough R. Expression of calcium-binding protein S100A2 in breast lesions. Br J Cancer. 2000;83(11):1473–9.CrossRefPubMedPubMedCentral
22.
go back to reference Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentral Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentral
23.
go back to reference Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31(34):4311–8.CrossRefPubMedPubMedCentral Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31(34):4311–8.CrossRefPubMedPubMedCentral
24.
go back to reference Song MM, Shuai K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem. 1998;273(52):35056–62.CrossRefPubMed Song MM, Shuai K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem. 1998;273(52):35056–62.CrossRefPubMed
25.
go back to reference Demers GW, Johnson DE, Machemer T, Looper LD, Batinica A, Beltran JC, et al. Tumor growth inhibition by interferon-alpha using PEGylated protein or adenovirus gene transfer with constitutive or regulated expression. Mol Ther. 2002;6(1):50–6.CrossRefPubMed Demers GW, Johnson DE, Machemer T, Looper LD, Batinica A, Beltran JC, et al. Tumor growth inhibition by interferon-alpha using PEGylated protein or adenovirus gene transfer with constitutive or regulated expression. Mol Ther. 2002;6(1):50–6.CrossRefPubMed
26.
go back to reference Endou M, Mizuno M, Nagata T, Tsukada K, Nakahara N, Tsuno T, et al. Growth inhibition of human pancreatic cancer cells by human interferon-beta gene combined with gemcitabine. Int J Mol Med. 2005;15(2):277–83.PubMed Endou M, Mizuno M, Nagata T, Tsukada K, Nakahara N, Tsuno T, et al. Growth inhibition of human pancreatic cancer cells by human interferon-beta gene combined with gemcitabine. Int J Mol Med. 2005;15(2):277–83.PubMed
27.
go back to reference Ozzello L, Habif DV, DeRosa CM. Antiproliferative effects of natural interferon beta alone and in combination with natural interferon gamma on human breast carcinomas in nude mice. Breast Cancer Res Treat. 1990;16(2):89–96.CrossRefPubMed Ozzello L, Habif DV, DeRosa CM. Antiproliferative effects of natural interferon beta alone and in combination with natural interferon gamma on human breast carcinomas in nude mice. Breast Cancer Res Treat. 1990;16(2):89–96.CrossRefPubMed
29.
go back to reference Borden EC, Balkwill FR. Preclinical and clinical studies of interferons and interferon inducers in breast cancer. Cancer. 1984;53(3 Suppl):783–9.CrossRefPubMed Borden EC, Balkwill FR. Preclinical and clinical studies of interferons and interferon inducers in breast cancer. Cancer. 1984;53(3 Suppl):783–9.CrossRefPubMed
30.
go back to reference Macheledt JE, Buzdar AU, Hortobagyi GN, Frye DK, Gutterman JU, Holmes FA. Phase II evaluation of interferon added to tamoxifen in the treatment of metastatic breast cancer. Breast Cancer Res Treat. 1991;18(3):165–70.CrossRefPubMed Macheledt JE, Buzdar AU, Hortobagyi GN, Frye DK, Gutterman JU, Holmes FA. Phase II evaluation of interferon added to tamoxifen in the treatment of metastatic breast cancer. Breast Cancer Res Treat. 1991;18(3):165–70.CrossRefPubMed
31.
go back to reference Bulbul MA, Huben RP, Murphy GP. Interferon-beta treatment of metastatic prostate cancer. J Surg Oncol. 1986;33(4):231–3.CrossRefPubMed Bulbul MA, Huben RP, Murphy GP. Interferon-beta treatment of metastatic prostate cancer. J Surg Oncol. 1986;33(4):231–3.CrossRefPubMed
32.
go back to reference Pouillart P, Palangie T, Jouve M, Garcia-Giralt E, Fridman WH, Magdelenat H, et al. Administration of fibroblast interferon to patients with advanced breast cancer: possible effects on skin metastasis and on hormone receptors. Eur J Cancer Clin Oncol. 1982;18(10):929–35.CrossRefPubMed Pouillart P, Palangie T, Jouve M, Garcia-Giralt E, Fridman WH, Magdelenat H, et al. Administration of fibroblast interferon to patients with advanced breast cancer: possible effects on skin metastasis and on hormone receptors. Eur J Cancer Clin Oncol. 1982;18(10):929–35.CrossRefPubMed
33.
go back to reference Einav U, Tabach Y, Getz G, Yitzhaky A, Ozbek U, Amariglio N, et al. Gene expression analysis reveals a strong signature of an interferon-induced pathway in childhood lymphoblastic leukemia as well as in breast and ovarian cancer. Oncogene. 2005;24(42):6367–75.PubMed Einav U, Tabach Y, Getz G, Yitzhaky A, Ozbek U, Amariglio N, et al. Gene expression analysis reveals a strong signature of an interferon-induced pathway in childhood lymphoblastic leukemia as well as in breast and ovarian cancer. Oncogene. 2005;24(42):6367–75.PubMed
34.
go back to reference Ilg EC, Schafer BW, Heizmann CW. Expression pattern of S100 calcium-binding proteins in human tumors. Int J Cancer. 1996;68(3):325–32.CrossRefPubMed Ilg EC, Schafer BW, Heizmann CW. Expression pattern of S100 calcium-binding proteins in human tumors. Int J Cancer. 1996;68(3):325–32.CrossRefPubMed
35.
go back to reference Gupta S, Hussain T, MacLennan GT, Fu P, Patel J, Mukhtar H. Differential expression of S100A2 and S100A4 during progression of human prostate adenocarcinoma. J Clin Oncol. 2003;21(1):106–12.CrossRefPubMed Gupta S, Hussain T, MacLennan GT, Fu P, Patel J, Mukhtar H. Differential expression of S100A2 and S100A4 during progression of human prostate adenocarcinoma. J Clin Oncol. 2003;21(1):106–12.CrossRefPubMed
36.
go back to reference Rickardson L, Fryknas M, Dhar S, Lovborg H, Gullbo J, Rydaker M, et al. Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles. Br J Cancer. 2005;93(4):483–92.CrossRefPubMedPubMedCentral Rickardson L, Fryknas M, Dhar S, Lovborg H, Gullbo J, Rydaker M, et al. Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles. Br J Cancer. 2005;93(4):483–92.CrossRefPubMedPubMedCentral
37.
go back to reference Cheon H, Holvey-Bates EG, Schoggins JW, Forster S, Hertzog P, Imanaka N, et al. IFNbeta-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J. 2013;32(20):2751–63.CrossRefPubMedPubMedCentral Cheon H, Holvey-Bates EG, Schoggins JW, Forster S, Hertzog P, Imanaka N, et al. IFNbeta-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J. 2013;32(20):2751–63.CrossRefPubMedPubMedCentral
Metadata
Title
A functional in vitro model of heterotypic interactions reveals a role for interferon-positive carcinoma associated fibroblasts in breast cancer
Authors
Abdel Nasser Hosein
Julie Livingstone
Marguerite Buchanan
James F Reid
Michael Hallett
Mark Basik
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1117-0

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine