Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2022

Open Access 01-12-2022 | Insulins | Research article

Glucose levels during gestational diabetes pregnancy and the risk of developing postpartum diabetes or prediabetes

Authors: Chadakarn Phaloprakarn, Siriwan Tangjitgamol

Published in: BMC Pregnancy and Childbirth | Issue 1/2022

Login to get access

Abstract

Background

Blood glucose levels during pregnancy may reflect the severity of insulin secretory defects and/or insulin resistance during gestational diabetes mellitus (GDM) pregnancy. We hypothesized that suboptimal glycemic control in women with GDM could increase the risk of postpartum type 2 diabetes mellitus (T2DM) or prediabetes. Our objective was to evaluate the impact of plasma glucose levels throughout GDM pregnancy on the risk of postpartum T2DM or prediabetes.

Methods

The medical records of 706 women with GDM who underwent a postpartum 75-g, 2-hour oral glucose tolerance test at our institution between January 2011 and December 2018 were reviewed. These women were classified into 2 groups according to glycemic control during pregnancy: ≤ 1 occasion of either fasting glucose ≥ 95 mg/dL or 2-hour postprandial glucose ≥ 120 mg/dL was defined as optimal glycemic control or else was classified as suboptimal glycemic control. Rates of postpartum T2DM and prediabetes were compared between women with optimal (n = 505) and suboptimal (n = 201) glycemic control.

Results

The rates of postpartum T2DM and prediabetes were significantly higher in the suboptimal glycemic control group than in the optimal glycemic control group: 22.4% vs. 3.0%, P < 0.001 for T2DM and 45.3% vs. 23.5%, P < 0.001 for prediabetes. In a multivariate analysis, suboptimal glucose control during pregnancy was an independent risk factor for developing either postpartum T2DM or prediabetes. The adjusted odds ratios were 8.4 (95% confidence interval, 3.5–20.3) for T2DM and 3.9 (95% confidence interval, 2.5–6.1) for prediabetes.

Conclusion

Our findings suggest that blood glucose levels during GDM pregnancy have an impact on the risk of postpartum T2DM and prediabetes.
Literature
1.
go back to reference Zhu Y, Zhang C. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. Curr Diab Rep. 2016;16:7.CrossRef Zhu Y, Zhang C. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. Curr Diab Rep. 2016;16:7.CrossRef
2.
go back to reference Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19:3342.CrossRef Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19:3342.CrossRef
3.
go back to reference Muche AA, Olayemi OO, Gete YK. Effects of gestational diabetes mellitus on risk of adverse maternal outcomes: a prospective cohort study in Northwest Ethiopia. BMC Pregnancy Childbirth. 2020;20(1):73.CrossRef Muche AA, Olayemi OO, Gete YK. Effects of gestational diabetes mellitus on risk of adverse maternal outcomes: a prospective cohort study in Northwest Ethiopia. BMC Pregnancy Childbirth. 2020;20(1):73.CrossRef
4.
go back to reference Phaloprakarn C, Tangjitgamol S. Risk score for predicting primary cesarean delivery in women with gestational diabetes mellitus. BMC Pregnancy Childbirth. 2020;20(1):607.CrossRef Phaloprakarn C, Tangjitgamol S. Risk score for predicting primary cesarean delivery in women with gestational diabetes mellitus. BMC Pregnancy Childbirth. 2020;20(1):607.CrossRef
5.
go back to reference Lorenzo C, Wagenknecht LE, D'Agostino RB Jr, Rewers MJ, Karter AJ, Haffner SM. Insulin resistance, β-cell dysfunction, and conversion to type 2 diabetes in a multiethnic population: The insulin resistance atherosclerosis study. Diabetes Care. 2010;33:67–72.CrossRef Lorenzo C, Wagenknecht LE, D'Agostino RB Jr, Rewers MJ, Karter AJ, Haffner SM. Insulin resistance, β-cell dysfunction, and conversion to type 2 diabetes in a multiethnic population: The insulin resistance atherosclerosis study. Diabetes Care. 2010;33:67–72.CrossRef
6.
go back to reference Tura A, Göbl C, Moro E, Pacini G. Insulin resistance and beta-cell dysfunction in people with prediabetes according to criteria based on glycemia and glycosylated hemoglobin. Endocr J. 2017;64:117–22.CrossRef Tura A, Göbl C, Moro E, Pacini G. Insulin resistance and beta-cell dysfunction in people with prediabetes according to criteria based on glycemia and glycosylated hemoglobin. Endocr J. 2017;64:117–22.CrossRef
7.
go back to reference González-Quintero VH, Istwan NB, Rhea DJ, Rodriguez LI, Cotter A, Carter J, et al. The impact of glycemic control on neonatal outcome in singleton pregnancies complicated by gestational diabetes. Diabetes Care. 2007;30:467–70.CrossRef González-Quintero VH, Istwan NB, Rhea DJ, Rodriguez LI, Cotter A, Carter J, et al. The impact of glycemic control on neonatal outcome in singleton pregnancies complicated by gestational diabetes. Diabetes Care. 2007;30:467–70.CrossRef
8.
go back to reference Langer O, Rodriguez DA, Xenakis EM, McFarland MB, Berkus MD, Arrendondo F. Intensified versus conventional management of gestational diabetes. Am J Obstet Gynecol. 1994;170:1036–46.CrossRef Langer O, Rodriguez DA, Xenakis EM, McFarland MB, Berkus MD, Arrendondo F. Intensified versus conventional management of gestational diabetes. Am J Obstet Gynecol. 1994;170:1036–46.CrossRef
9.
go back to reference Greenberg LR, Moore TR, Murphy H. Gestational diabetes mellitus: antenatal variables as predictors of postpartum glucose intolerance. Obstet Gynecol. 1995;86:97–101.CrossRef Greenberg LR, Moore TR, Murphy H. Gestational diabetes mellitus: antenatal variables as predictors of postpartum glucose intolerance. Obstet Gynecol. 1995;86:97–101.CrossRef
10.
go back to reference Yefet E, Schwartz N, Sliman B, Ishay A, Nachum Z. Good glycemic control of gestational diabetes mellitus is associated with the attenuation of future maternal cardiovascular risk: a retrospective cohort study. Cardiovasc Diabetol. 2019;18:75.CrossRef Yefet E, Schwartz N, Sliman B, Ishay A, Nachum Z. Good glycemic control of gestational diabetes mellitus is associated with the attenuation of future maternal cardiovascular risk: a retrospective cohort study. Cardiovasc Diabetol. 2019;18:75.CrossRef
11.
go back to reference Saisho Y, Miyakoshi K, Tanaka M, Shimada A, Ikenoue S, Kadohira I, et al. Beta cell dysfunction and its clinical significance in gestational diabetes. Endocr J. 2010;57:973–80.CrossRef Saisho Y, Miyakoshi K, Tanaka M, Shimada A, Ikenoue S, Kadohira I, et al. Beta cell dysfunction and its clinical significance in gestational diabetes. Endocr J. 2010;57:973–80.CrossRef
12.
go back to reference American Diabetes Association. 14. Management of diabetes in pregnancy: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S183–S92. American Diabetes Association. 14. Management of diabetes in pregnancy: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S183–S92.
13.
go back to reference Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 190: Gestational diabetes mellitus. Obstet Gynecol. 2018;131:e49–e64. Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 190: Gestational diabetes mellitus. Obstet Gynecol. 2018;131:e49–e64.
14.
go back to reference Carpenter MW, Coustan DR. Criteria for screening tests for gestational diabetes. Am J Obstet Gynecol. 1982;144:768–73.CrossRef Carpenter MW, Coustan DR. Criteria for screening tests for gestational diabetes. Am J Obstet Gynecol. 1982;144:768–73.CrossRef
15.
go back to reference Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373:1773–9.CrossRef Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373:1773–9.CrossRef
16.
go back to reference Kramer CK, Swaminathan B, Hanley AJ, Connelly PW, Sermer M, Zinman B, et al. Each degree of glucose intolerance in pregnancy predicts distinct trajectories of β-cell function, insulin sensitivity, and glycemia in the first 3 years postpartum. Diabetes Care. 2014;37:3262–9.CrossRef Kramer CK, Swaminathan B, Hanley AJ, Connelly PW, Sermer M, Zinman B, et al. Each degree of glucose intolerance in pregnancy predicts distinct trajectories of β-cell function, insulin sensitivity, and glycemia in the first 3 years postpartum. Diabetes Care. 2014;37:3262–9.CrossRef
17.
go back to reference Retnakaran R, Qi Y, Sermer M, Connelly PW, Hanley AJ, Zinman B. Glucose intolerance in pregnancy and future risk of pre-diabetes or diabetes. Diabetes Care. 2008;31:2026–31.CrossRef Retnakaran R, Qi Y, Sermer M, Connelly PW, Hanley AJ, Zinman B. Glucose intolerance in pregnancy and future risk of pre-diabetes or diabetes. Diabetes Care. 2008;31:2026–31.CrossRef
18.
go back to reference Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37.
19.
go back to reference Saisho Y. β-cell dysfunction: its critical role in prevention and management of type 2 diabetes. World J Diabetes. 2015;6:109–24.CrossRef Saisho Y. β-cell dysfunction: its critical role in prevention and management of type 2 diabetes. World J Diabetes. 2015;6:109–24.CrossRef
20.
go back to reference Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, et al. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab. 2003;88:2300–8.CrossRef Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, et al. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab. 2003;88:2300–8.CrossRef
21.
go back to reference Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia. 2002;45:85–96.CrossRef Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia. 2002;45:85–96.CrossRef
22.
go back to reference Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10(Suppl 4):32–42.CrossRef Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10(Suppl 4):32–42.CrossRef
23.
go back to reference Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.CrossRef Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.CrossRef
24.
go back to reference Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003;52:2795–804.CrossRef Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003;52:2795–804.CrossRef
25.
go back to reference Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, et al. Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev. 2006;22:198–203.CrossRef Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, et al. Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev. 2006;22:198–203.CrossRef
26.
go back to reference Shao C, Gu J, Meng X, Zheng H, Wang D. Systematic investigation into the role of intermittent high glucose in pancreatic beta-cells. Int J Clin Exp Med. 2015;8:5462–9.PubMedPubMedCentral Shao C, Gu J, Meng X, Zheng H, Wang D. Systematic investigation into the role of intermittent high glucose in pancreatic beta-cells. Int J Clin Exp Med. 2015;8:5462–9.PubMedPubMedCentral
27.
go back to reference Pallardo LF, Herranz L, Martin-Vaquero P, Garcia-Ingelmo T, Grande C, Jañez M. Impaired fasting glucose and impaired glucose tolerance in women with prior gestational diabetes are associated with a different cardiovascular profile. Diabetes Care. 2003;26(8):2318–22.CrossRef Pallardo LF, Herranz L, Martin-Vaquero P, Garcia-Ingelmo T, Grande C, Jañez M. Impaired fasting glucose and impaired glucose tolerance in women with prior gestational diabetes are associated with a different cardiovascular profile. Diabetes Care. 2003;26(8):2318–22.CrossRef
28.
go back to reference Hostalek U. Global epidemiology of prediabetes - present and future perspectives. Clin Diabetes Endocrinol. 2019;5:5.CrossRef Hostalek U. Global epidemiology of prediabetes - present and future perspectives. Clin Diabetes Endocrinol. 2019;5:5.CrossRef
29.
go back to reference Ligthart S, van Herpt TT, Leening MJ, Kavousi M, Hofman A, Stricker BH, et al. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: a prospective cohort study. Lancet Diabetes Endocrinol. 2016;4:44–51.CrossRef Ligthart S, van Herpt TT, Leening MJ, Kavousi M, Hofman A, Stricker BH, et al. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: a prospective cohort study. Lancet Diabetes Endocrinol. 2016;4:44–51.CrossRef
30.
go back to reference International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–82.CrossRef International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–82.CrossRef
31.
go back to reference Granada C, Forbes J, Sangi-Haghpeykar H, Davidson C. Can overt diabetes mellitus be predicted by an early A1C value in gestational diabetics? J Reprod Med. 2014;59(7-8):343–7.PubMed Granada C, Forbes J, Sangi-Haghpeykar H, Davidson C. Can overt diabetes mellitus be predicted by an early A1C value in gestational diabetics? J Reprod Med. 2014;59(7-8):343–7.PubMed
Metadata
Title
Glucose levels during gestational diabetes pregnancy and the risk of developing postpartum diabetes or prediabetes
Authors
Chadakarn Phaloprakarn
Siriwan Tangjitgamol
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2022
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-021-04352-w

Other articles of this Issue 1/2022

BMC Pregnancy and Childbirth 1/2022 Go to the issue