Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2021

Open Access 01-12-2021 | Infertility | Research

Association of parental prepregnancy BMI with neonatal outcomes and birth defect in fresh embryo transfer cycles: a retrospective cohort study

Authors: Ruixue Chen, Lifen Chen, Yifeng Liu, Feixia Wang, Siwen Wang, Yun Huang, Kai-Lun Hu, Yuzhi Fan, Ruoyan Liu, Runjv Zhang, Dan Zhang

Published in: BMC Pregnancy and Childbirth | Issue 1/2021

Login to get access

Abstract

Background

Parental body mass index (BMI) is associated with pregnancy outcomes. But the effect of parental prepregnancy BMI on offspring conceived via in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI), especially the birth defect, remains to be determined. This study aimed to investigate the associations of parental prepregnancy BMI with neonatal outcomes and birth defect in fresh embryo transfer cycles.

Methods

We conducted a retrospective cohort study including 5741 couples in their first fresh IVF/ICSI cycles admitted to Women’s Hospital, School of Medicine, Zhejiang University from January 2013 to July 2016. The primary outcome was birth defects, which was classified according to the International Classification of Diseases, 10th Revision. Secondary outcomes included preterm delivery rate, infant gender, birth weight, small-for-gestational age (SGA) and large-for-gestational age (LGA). Multilevel regression analyses were used to assess the associations of parental prepregnancy BMI with neonatal outcomes and birth defect.

Results

In singletons, couples with prepregnancy BMI ≥25 kg/m2 had higher odds of LGA than those with BMI < 25 kg/m2. The birth defect rate was significantly higher when paternal prepregnancy BMI ≥25 kg/m2 in IVF cycles (aOR 1.82, 95% CI 1.06–3.10) and maternal BMI ≥25 kg/m2 in ICSI cycles (aOR 4.89, 95% CI 1.45–16.53). For subcategories of birth defects, only the odds of congenital malformations of musculoskeletal system was significantly increased in IVF offspring with paternal BMI ≥25 kg/m2 (aOR 4.55, 95% CI 1.32–15.71). For twins, there was no significant difference among four groups, except for the lower birth weight of IVF female infants.

Conclusions

Parental prepregnancy BMI ≥25 kg/m2 is associated with higher incidence of LGA in IVF/ICSI singletons. Paternal prepregnancy BMI ≥25 kg/m2 was likely to have higher risk of birth defect in IVF offspring than those with BMI < 25 kg/m2, particularly in the musculoskeletal system. It is essential for overweight or obesity couples to lose weight before IVF/ICSI treatments.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bentham J, Di Cesare M, Bilano V, Bixby H, Zhou B, Stevens GA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.CrossRef Bentham J, Di Cesare M, Bilano V, Bixby H, Zhou B, Stevens GA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.CrossRef
2.
go back to reference Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham heart study. Circulation. 1983;67(5):968–77.PubMedCrossRef Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham heart study. Circulation. 1983;67(5):968–77.PubMedCrossRef
3.
go back to reference Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.PubMedCrossRef Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.PubMedCrossRef
4.
go back to reference Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med. 2001;161(13):1581–6.PubMedCrossRef Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med. 2001;161(13):1581–6.PubMedCrossRef
5.
go back to reference Metwally M, Li TC, Ledger WL. The impact of obesity on female reproductive function. Obes Rev. 2007;8(6):515–23.PubMedCrossRef Metwally M, Li TC, Ledger WL. The impact of obesity on female reproductive function. Obes Rev. 2007;8(6):515–23.PubMedCrossRef
6.
go back to reference Robker RL. Evidence that obesity alters the quality of oocytes and embryos. Pathophysiology. 2008;15(2):115–21.PubMedCrossRef Robker RL. Evidence that obesity alters the quality of oocytes and embryos. Pathophysiology. 2008;15(2):115–21.PubMedCrossRef
7.
go back to reference Sermondade N, Faure C, Fezeu L, Shayeb AG, Bonde JP, Jensen TK, et al. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum Reprod Update. 2013;19(3):221–31.PubMedCrossRef Sermondade N, Faure C, Fezeu L, Shayeb AG, Bonde JP, Jensen TK, et al. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum Reprod Update. 2013;19(3):221–31.PubMedCrossRef
8.
go back to reference Bellver J, Pellicer A, García-Velasco JA, Ballesteros A, Remohí J, Meseguer M. Obesity reduces uterine receptivity: clinical experience from 9,587 first cycles of ovum donation with normal weight donors. Fertil Steril. 2013;100(4):1050–8.PubMedCrossRef Bellver J, Pellicer A, García-Velasco JA, Ballesteros A, Remohí J, Meseguer M. Obesity reduces uterine receptivity: clinical experience from 9,587 first cycles of ovum donation with normal weight donors. Fertil Steril. 2013;100(4):1050–8.PubMedCrossRef
9.
go back to reference Wang X, Hao J, Zhang F, Li J, Kong H, Guo Y. Effects of female and male body mass indices on the treatment outcomes and neonatal birth weights associated with in vitro fertilization/intracytoplasmic sperm injection treatment in China. Fertil Steril. 2016;106(2):460–6.PubMedCrossRef Wang X, Hao J, Zhang F, Li J, Kong H, Guo Y. Effects of female and male body mass indices on the treatment outcomes and neonatal birth weights associated with in vitro fertilization/intracytoplasmic sperm injection treatment in China. Fertil Steril. 2016;106(2):460–6.PubMedCrossRef
10.
go back to reference Sebire NJ, Jolly M, Harris JP, Wadsworth J, Joffe M, Beard RW, et al. Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. Int J Obes. 2001;25(8):1175–82.CrossRef Sebire NJ, Jolly M, Harris JP, Wadsworth J, Joffe M, Beard RW, et al. Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. Int J Obes. 2001;25(8):1175–82.CrossRef
11.
go back to reference Campbell JM, McPherson NO. Influence of increased paternal BMI on pregnancy and child health outcomes independent of maternal effects: a systematic review and meta-analysis. Obes Res Clin Pract. 2019;13(6):511–21.PubMedCrossRef Campbell JM, McPherson NO. Influence of increased paternal BMI on pregnancy and child health outcomes independent of maternal effects: a systematic review and meta-analysis. Obes Res Clin Pract. 2019;13(6):511–21.PubMedCrossRef
13.
go back to reference Takagi K, Iwama N, Metoki H, Uchikura Y, Matsubara Y, Matsubara K, et al. Paternal height has an impact on birth weight of their offspring in a Japanese population: the Japan environment and Children’s study. J Dev Orig Health Dis. 2019;10(5):542–54.PubMedCrossRef Takagi K, Iwama N, Metoki H, Uchikura Y, Matsubara Y, Matsubara K, et al. Paternal height has an impact on birth weight of their offspring in a Japanese population: the Japan environment and Children’s study. J Dev Orig Health Dis. 2019;10(5):542–54.PubMedCrossRef
14.
go back to reference Yang Q, Wen SW, Leader A, Chen XK, Lipson J, Walker M. Paternal age and birth defects: how strong is the association? Hum Reprod. 2007;22(3):696–701.PubMedCrossRef Yang Q, Wen SW, Leader A, Chen XK, Lipson J, Walker M. Paternal age and birth defects: how strong is the association? Hum Reprod. 2007;22(3):696–701.PubMedCrossRef
15.
go back to reference Pierik FH, Burdorf A, Deddens JA, Juttmann RE, Weber RFA. Maternal and paternal risk factors for cryptorchidism and hypospadias: a case-control study in newborn boys. Environ Health Perspect. 2004;112(15):1570–6.PubMedPubMedCentralCrossRef Pierik FH, Burdorf A, Deddens JA, Juttmann RE, Weber RFA. Maternal and paternal risk factors for cryptorchidism and hypospadias: a case-control study in newborn boys. Environ Health Perspect. 2004;112(15):1570–6.PubMedPubMedCentralCrossRef
16.
go back to reference Vereczkey A, Gerencsér B, Czeizel AE, Szabó I. Association of certain chronic maternal diseases with the risk of specific congenital heart defects: a population-based study. Eur J Obstet Gynecol Reprod Biol. 2014;182:1–6.PubMedCrossRef Vereczkey A, Gerencsér B, Czeizel AE, Szabó I. Association of certain chronic maternal diseases with the risk of specific congenital heart defects: a population-based study. Eur J Obstet Gynecol Reprod Biol. 2014;182:1–6.PubMedCrossRef
17.
go back to reference Stothard KJ, Tennant PWG, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA. 2009;301(6):636–50.PubMedCrossRef Stothard KJ, Tennant PWG, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA. 2009;301(6):636–50.PubMedCrossRef
18.
go back to reference Yu HT, Yang Q, Sun XX, Chen GW, Qian NS, Cai RZ, et al. Association of birth defects with the mode of assisted reproductive technology in a Chinese data-linkage cohort. Fertil Steril. 2018;109(5):849–56.PubMedCrossRef Yu HT, Yang Q, Sun XX, Chen GW, Qian NS, Cai RZ, et al. Association of birth defects with the mode of assisted reproductive technology in a Chinese data-linkage cohort. Fertil Steril. 2018;109(5):849–56.PubMedCrossRef
19.
go back to reference Zhu J, Zhu Q, Wang Y, Wang B, Lyu Q, Kuang Y. Comparative study on risk for birth defects among infants after in vitro fertilization and intracytoplasmic sperm injection. Syst Biol Reprod Med. 2019;65(1):54–60.PubMedCrossRef Zhu J, Zhu Q, Wang Y, Wang B, Lyu Q, Kuang Y. Comparative study on risk for birth defects among infants after in vitro fertilization and intracytoplasmic sperm injection. Syst Biol Reprod Med. 2019;65(1):54–60.PubMedCrossRef
20.
go back to reference World Health Organisation (WHO). Guidelines for controlling and monitoring the tobacco epidemic. 1997. World Health Organisation (WHO). Guidelines for controlling and monitoring the tobacco epidemic. 1997.
21.
go back to reference World Health Organisation (WHO). Global status report on alcohol and health. 2011. World Health Organisation (WHO). Global status report on alcohol and health. 2011.
23.
go back to reference Bellver J, Ayllón Y, Ferrando M, Melo M, Goyri E, Pellicer A, et al. Female obesity impairs in vitro fertilization outcome without affecting embryo quality. Fertil Steril. 2010;93(2):447–54.PubMedCrossRef Bellver J, Ayllón Y, Ferrando M, Melo M, Goyri E, Pellicer A, et al. Female obesity impairs in vitro fertilization outcome without affecting embryo quality. Fertil Steril. 2010;93(2):447–54.PubMedCrossRef
24.
go back to reference Sermondade N, Huberlant S, Bourhis-Lefebvre V, Arbo E, Gallot V, Colombani M, et al. Female obesity is negatively associated with live birth rate following IVF: a systematic review and meta-analysis. Hum Reprod Update. 2019;25(4):439–51.PubMedCrossRef Sermondade N, Huberlant S, Bourhis-Lefebvre V, Arbo E, Gallot V, Colombani M, et al. Female obesity is negatively associated with live birth rate following IVF: a systematic review and meta-analysis. Hum Reprod Update. 2019;25(4):439–51.PubMedCrossRef
25.
go back to reference Luke B, Brown MB, Stern JE, Missmer SA, Fujimoto VY, Leach R. Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates. Hum Reprod. 2011;26(1):245–52.PubMedCrossRef Luke B, Brown MB, Stern JE, Missmer SA, Fujimoto VY, Leach R. Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates. Hum Reprod. 2011;26(1):245–52.PubMedCrossRef
26.
go back to reference Le W, Su SH, Shi LH, Zhang JF, Wu DL. Effect of male body mass index on clinical outcomes following assisted reproductive technology: a meta-analysis. Andrologia. 2016;48(4):406–24.PubMedCrossRef Le W, Su SH, Shi LH, Zhang JF, Wu DL. Effect of male body mass index on clinical outcomes following assisted reproductive technology: a meta-analysis. Andrologia. 2016;48(4):406–24.PubMedCrossRef
27.
go back to reference Ozgun MT, Uludag S, Oner G, Batukan C, Aygen EM, Sahin Y. The influence of obesity on ICSI outcomes in women with polycystic ovary syndrome. J Obstet Gynaecol. 2011;31(3):245–9.PubMedCrossRef Ozgun MT, Uludag S, Oner G, Batukan C, Aygen EM, Sahin Y. The influence of obesity on ICSI outcomes in women with polycystic ovary syndrome. J Obstet Gynaecol. 2011;31(3):245–9.PubMedCrossRef
28.
go back to reference Beltran Anzola A, Pauly V, Riviere O, Sambuc R, Boyer P, Vendittelli F, et al. Birthweight of IVF children is still a current issue and still related to maternal factors. Reprod BioMed Online. 2019;39(6):990–9.PubMedCrossRef Beltran Anzola A, Pauly V, Riviere O, Sambuc R, Boyer P, Vendittelli F, et al. Birthweight of IVF children is still a current issue and still related to maternal factors. Reprod BioMed Online. 2019;39(6):990–9.PubMedCrossRef
29.
go back to reference Ehrenberg HM, Mercer BM, Catalano PM. The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynecol. 2004;191(3):964–8.PubMedCrossRef Ehrenberg HM, Mercer BM, Catalano PM. The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynecol. 2004;191(3):964–8.PubMedCrossRef
30.
go back to reference Zhao R, Xu L, Wu ML, Huang SH, Cao XJ. Maternal pre-pregnancy body mass index, gestational weight gain influence birth weight. Women Birth. 2018;31(1):e20-5. Zhao R, Xu L, Wu ML, Huang SH, Cao XJ. Maternal pre-pregnancy body mass index, gestational weight gain influence birth weight. Women Birth. 2018;31(1):e20-5.
31.
go back to reference Mestan K, Ouyang F, Matoba N, Pearson C, Ortiz K, Wang X. Maternal obesity, diabetes mellitus and cord blood biomarkers in large-for-gestational age infants. J Pediatric Biochem. 2016;01(03):217–24.CrossRef Mestan K, Ouyang F, Matoba N, Pearson C, Ortiz K, Wang X. Maternal obesity, diabetes mellitus and cord blood biomarkers in large-for-gestational age infants. J Pediatric Biochem. 2016;01(03):217–24.CrossRef
32.
go back to reference Zhao H, Zhao Y, Ren Y, Li M, Li T, Li R, et al. Epigenetic regulation of an adverse metabolic phenotype in polycystic ovary syndrome: the impact of the leukocyte methylation of PPARGC1A promoter. Fertil Steril. 2017;107(2):467–74.PubMedCrossRef Zhao H, Zhao Y, Ren Y, Li M, Li T, Li R, et al. Epigenetic regulation of an adverse metabolic phenotype in polycystic ovary syndrome: the impact of the leukocyte methylation of PPARGC1A promoter. Fertil Steril. 2017;107(2):467–74.PubMedCrossRef
34.
go back to reference Zander-Fox DL, Henshaw R, Hamilton H, Lane M. Does obesity really matter? The impact of BMI on embryo quality and pregnancy outcomes after IVF in women aged ≤38 years. Aust N Z J Obstet Gynaecol. 2012;52(3):270–6.PubMedCrossRef Zander-Fox DL, Henshaw R, Hamilton H, Lane M. Does obesity really matter? The impact of BMI on embryo quality and pregnancy outcomes after IVF in women aged ≤38 years. Aust N Z J Obstet Gynaecol. 2012;52(3):270–6.PubMedCrossRef
35.
go back to reference Weiss JL, Malone FD, Emig D, Ball RH, Nyberg DA, Comstock CH, et al. Obesity, obstetric complications and cesarean delivery rate - a population-based screening study. Am J Obstet Gynecol. 2004;190(4):1091–7.PubMedCrossRef Weiss JL, Malone FD, Emig D, Ball RH, Nyberg DA, Comstock CH, et al. Obesity, obstetric complications and cesarean delivery rate - a population-based screening study. Am J Obstet Gynecol. 2004;190(4):1091–7.PubMedCrossRef
36.
go back to reference Dokras A, Baredziak L, Blaine J, Syrop C, VanVoorhis BJ, Sparks A. Obstetric outcomes after in vitro fertilization in obese and morbidly obese women. Obstet Gynecol. 2006;108(1):61–9.PubMedCrossRef Dokras A, Baredziak L, Blaine J, Syrop C, VanVoorhis BJ, Sparks A. Obstetric outcomes after in vitro fertilization in obese and morbidly obese women. Obstet Gynecol. 2006;108(1):61–9.PubMedCrossRef
37.
go back to reference Fukuda M, Fukuda K, Shimizu T, Andersen CY, Byskov AG. Parental periconceptional smoking and male: female ratio of newborn infants. Lancet. 2002;359(9315):1407–8.PubMedCrossRef Fukuda M, Fukuda K, Shimizu T, Andersen CY, Byskov AG. Parental periconceptional smoking and male: female ratio of newborn infants. Lancet. 2002;359(9315):1407–8.PubMedCrossRef
38.
go back to reference Juntunen KST, Kvist AP, Kauppila AJI. A shift from a male to a female majority in newborns with the increasing age of grand grand multiparous women. Hum Reprod. 1997;12(10):2321–3.PubMedCrossRef Juntunen KST, Kvist AP, Kauppila AJI. A shift from a male to a female majority in newborns with the increasing age of grand grand multiparous women. Hum Reprod. 1997;12(10):2321–3.PubMedCrossRef
39.
go back to reference Nicolich MJ, Huebner WW, Schnatter AR. Influence of parental and biological factors on the male birth fraction in the United States: an analysis of birth certificate data from 1964 through 1988. Fertil Steril. 2000;73(3):487–92.PubMedCrossRef Nicolich MJ, Huebner WW, Schnatter AR. Influence of parental and biological factors on the male birth fraction in the United States: an analysis of birth certificate data from 1964 through 1988. Fertil Steril. 2000;73(3):487–92.PubMedCrossRef
40.
go back to reference Crawford MA, Lowy C, Koukkou E, Poston L, Ghebremeskel K. Sex ratio of offspring of diabetics. Lancet. 1998;351(9114):1515–6.PubMedCrossRef Crawford MA, Lowy C, Koukkou E, Poston L, Ghebremeskel K. Sex ratio of offspring of diabetics. Lancet. 1998;351(9114):1515–6.PubMedCrossRef
41.
go back to reference Ram M, Berger H, Lipworth H, Geary M, McDonald SD, Murray-Davis B, et al. The relationship between maternal body mass index and pregnancy outcomes in twin compared with singleton pregnancies. Int J Obes. 2020;44(1):33–44.CrossRef Ram M, Berger H, Lipworth H, Geary M, McDonald SD, Murray-Davis B, et al. The relationship between maternal body mass index and pregnancy outcomes in twin compared with singleton pregnancies. Int J Obes. 2020;44(1):33–44.CrossRef
42.
go back to reference Powers WF, Kiely JL. The risks confronting twins: a national perspective. Am J Obstet Gynecol. 1994;170(2):456–61.PubMedCrossRef Powers WF, Kiely JL. The risks confronting twins: a national perspective. Am J Obstet Gynecol. 1994;170(2):456–61.PubMedCrossRef
43.
go back to reference Chauhan SP, Scardo JA, Hayes E, Abuhamad AZ, Berghella V. Twins: prevalence, problems, and preterm births. Am J Obstet Gynecol. 2010;203(4):305–15.PubMedCrossRef Chauhan SP, Scardo JA, Hayes E, Abuhamad AZ, Berghella V. Twins: prevalence, problems, and preterm births. Am J Obstet Gynecol. 2010;203(4):305–15.PubMedCrossRef
44.
go back to reference Schwartz DB, Daoud Y, Zazula P, Goyert G, Bronsteen R, Wright D, et al. Gestational diabetes mellitus: metabolic and blood glucose parameters in singleton versus twin pregnancies. Am J Obstet Gynecol. 1999;181(4):912–4.PubMedCrossRef Schwartz DB, Daoud Y, Zazula P, Goyert G, Bronsteen R, Wright D, et al. Gestational diabetes mellitus: metabolic and blood glucose parameters in singleton versus twin pregnancies. Am J Obstet Gynecol. 1999;181(4):912–4.PubMedCrossRef
45.
go back to reference Reefhuis J, Honein MA. Maternal age and non-chromosomal birth defects, Atlanta - 1968-2000: teenager or thirty-something, who is at risk? Birth Defects Res Part A Clin Mol Teratol. 2004;70(9):572–9.CrossRef Reefhuis J, Honein MA. Maternal age and non-chromosomal birth defects, Atlanta - 1968-2000: teenager or thirty-something, who is at risk? Birth Defects Res Part A Clin Mol Teratol. 2004;70(9):572–9.CrossRef
46.
go back to reference Zhu H, Kartiko S, Finnell RH. Importance of gene - environment interactions in the etiology of selected birth defects. Clin Genet. 2009;75(5):409–23.PubMedCrossRef Zhu H, Kartiko S, Finnell RH. Importance of gene - environment interactions in the etiology of selected birth defects. Clin Genet. 2009;75(5):409–23.PubMedCrossRef
47.
go back to reference Olson CK, Keppler-Noreuil KM, Romitti PA, Budelier WT, Ryan G, Sparks AET, et al. In vitro fertilization is associated with an increase in major birth defects. Fertil Steril. 2005;84(5):1308–15.PubMedCrossRef Olson CK, Keppler-Noreuil KM, Romitti PA, Budelier WT, Ryan G, Sparks AET, et al. In vitro fertilization is associated with an increase in major birth defects. Fertil Steril. 2005;84(5):1308–15.PubMedCrossRef
48.
go back to reference Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13.PubMedCrossRef Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13.PubMedCrossRef
49.
go back to reference Cedergren M, Källén B. Maternal obesity and the risk for orofacial clefts in the offspring. Cleft Palate Craniofacial J. 2005;42(4):367–71.CrossRef Cedergren M, Källén B. Maternal obesity and the risk for orofacial clefts in the offspring. Cleft Palate Craniofacial J. 2005;42(4):367–71.CrossRef
50.
go back to reference He Y, Xie X, Tang W, Ma X. Maternal and paternal obesity and adverse pregnancy outcomes in China: a cohort study. Lancet. 2017;390(Suppl 4):52S.CrossRef He Y, Xie X, Tang W, Ma X. Maternal and paternal obesity and adverse pregnancy outcomes in China: a cohort study. Lancet. 2017;390(Suppl 4):52S.CrossRef
51.
go back to reference Van Rooij IALM, Wijers CHW, Rieu PNMA, Hendriks HS, Brouwers MM, Knoers NV, et al. Maternal and paternal risk factors for anorectal malformations: a Dutch case-control study. Birth Defects Res Part A Clin Mol Teratol. 2010;88(3):152–8. Van Rooij IALM, Wijers CHW, Rieu PNMA, Hendriks HS, Brouwers MM, Knoers NV, et al. Maternal and paternal risk factors for anorectal malformations: a Dutch case-control study. Birth Defects Res Part A Clin Mol Teratol. 2010;88(3):152–8.
52.
go back to reference Lecomte V, Maloney CA, Wang KW, Morris MJ. Effects of paternal obesity on growth and adiposity of male rat offspring. Am J Physiol Endocrinol Metab. 2017;312(2):e117-25. Lecomte V, Maloney CA, Wang KW, Morris MJ. Effects of paternal obesity on growth and adiposity of male rat offspring. Am J Physiol Endocrinol Metab. 2017;312(2):e117-25.
53.
go back to reference Falcão-Tebas F, Kuang J, Arceri C, Kerris JP, Andrikopoulos S, Marin EC, et al. Four weeks of exercise early in life reprograms adult skeletal muscle insulin resistance caused by a paternal high-fat diet. J Physiol. 2019;597(1):121–36.PubMedCrossRef Falcão-Tebas F, Kuang J, Arceri C, Kerris JP, Andrikopoulos S, Marin EC, et al. Four weeks of exercise early in life reprograms adult skeletal muscle insulin resistance caused by a paternal high-fat diet. J Physiol. 2019;597(1):121–36.PubMedCrossRef
54.
go back to reference Krout D, Roemmich JN, Bundy A, Garcia RA, Yan L, Claycombe-Larson KJ. Paternal exercise protects mouse offspring from high-fat-diet-induced type 2 diabetes risk by increasing skeletal muscle insulin signaling. J Nutr Biochem. 2018;57:35–44.PubMedCrossRef Krout D, Roemmich JN, Bundy A, Garcia RA, Yan L, Claycombe-Larson KJ. Paternal exercise protects mouse offspring from high-fat-diet-induced type 2 diabetes risk by increasing skeletal muscle insulin signaling. J Nutr Biochem. 2018;57:35–44.PubMedCrossRef
Metadata
Title
Association of parental prepregnancy BMI with neonatal outcomes and birth defect in fresh embryo transfer cycles: a retrospective cohort study
Authors
Ruixue Chen
Lifen Chen
Yifeng Liu
Feixia Wang
Siwen Wang
Yun Huang
Kai-Lun Hu
Yuzhi Fan
Ruoyan Liu
Runjv Zhang
Dan Zhang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2021
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-021-04261-y

Other articles of this Issue 1/2021

BMC Pregnancy and Childbirth 1/2021 Go to the issue