Skip to main content
Top
Published in: BMC Medical Genetics 1/2019

Open Access 01-12-2019 | Melanoma | Research article

Weighted correlation network and differential expression analyses identify candidate genes associated with BRAF gene in melanoma

Authors: Bin Zhao, Yanqiu You, Zheng Wan, Yunhan Ma, Yani Huo, Hongyi Liu, Yuanyuan Zhou, Wei Quan, Weibin Chen, Xiaohong Zhang, Fujun Li, Yilin Zhao

Published in: BMC Medical Genetics | Issue 1/2019

Login to get access

Abstract

Background

Primary cutaneous malignant melanoma is a cancer of the pigment cells of the skin, some of which are accompanied by BRAF mutation. Melanoma incidence and mortality rates have been rising around the world. As the current knowledge about pathogenesis, clinical and genetic features of cutaneous melanoma is not very clear, we aim to use bioinformatics to identify the potential key genes involved in the expression and mutation status of BRAF.

Methods

Firstly, we used UCSC public hub datasets of melanoma (Lin et al., Cancer Res 68(3):664, 2008) to perform weighted genes co-expression network analysis (WGCNA) and differentially expressed genes analysis (DEGs), respectively. Secondly, overlapping genes between significant gene modules and DEGs were screened and validated at transcriptional levels and overall survival in TCGA and GTEx datasets. Lastly, the functional enrichment analysis was accomplished to find biological functions on the web-server database.

Results

We performed weighted correlation network and differential expression analyses, using gene expression data in melanoma samples. We identified 20 genes whose expression was correlated with the mutation status of BRAF. For further validation, three of these genes (CYR61, DUSP1, and RNASE4) were found to have similar expression patterns in skin tumors from TCGA compared with normal skin samples from GTEx. We also found that weak expression of these three genes was associated with worse overall survival in the TCGA data. These three genes were involved in the nucleic acid metabolic process.

Conclusion

In this study, CYR61, DUSP1, and RNASE4 were identified as potential genes of interest for future molecular studies in melanoma, which would improve our understanding of its causes and underlying molecular events. These candidate genes may provide a promising avenue of future research for therapeutic targets in melanoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stewart B, Wild C. World cancer report 2014: International Agency for Research on Cancer; 2014. Stewart B, Wild C. World cancer report 2014: International Agency for Research on Cancer; 2014.
3.
go back to reference Azoury SC, Lange JR. Epidemiology, risk factors, Prevention, and early detection of melanoma. Surg Clin North Am. 2014;94(5):945–62.CrossRef Azoury SC, Lange JR. Epidemiology, risk factors, Prevention, and early detection of melanoma. Surg Clin North Am. 2014;94(5):945–62.CrossRef
4.
go back to reference Reports FS. FDA approves vemurafenib and companion diagnostic test for late-stage skin cancer; 2011. Reports FS. FDA approves vemurafenib and companion diagnostic test for late-stage skin cancer; 2011.
5.
go back to reference Sponghini AP, Rondonotti D, Giavarra M, Giorgione R, Platini F. Safety and efficacy of vemurafenib in BRAF V600E mutation-positive metastatic melanomas. J Transl Med. 2015;13(1):2075. Sponghini AP, Rondonotti D, Giavarra M, Giorgione R, Platini F. Safety and efficacy of vemurafenib in BRAF V600E mutation-positive metastatic melanomas. J Transl Med. 2015;13(1):2075.
6.
go back to reference Shahabi V, Hamid O, Schmidt H, Chasalow SD, Alaparthy S, Jackson JR. Assessment of association between BRAF-V600E mutation status in melanomas and clinical response to ipilimumab. Cancer Immunol Immunother. 2012;61(5):733–7.CrossRef Shahabi V, Hamid O, Schmidt H, Chasalow SD, Alaparthy S, Jackson JR. Assessment of association between BRAF-V600E mutation status in melanomas and clinical response to ipilimumab. Cancer Immunol Immunother. 2012;61(5):733–7.CrossRef
7.
go back to reference Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559.
8.
go back to reference Yang Q, Wang R, Wei B, Peng C, Wang L, Hu G, Kong D, Du C. Candidate biomarkers and molecular mechanism investigation for glioblastoma Multiforme utilizing WGCNA. Biomed Res Int. 2018;2018. Yang Q, Wang R, Wei B, Peng C, Wang L, Hu G, Kong D, Du C. Candidate biomarkers and molecular mechanism investigation for glioblastoma Multiforme utilizing WGCNA. Biomed Res Int. 2018;2018.
9.
go back to reference Zhai X, Xue Q, Liu Q, Guo Y, Chen Z. Colon cancer recurrence-associated genes revealed by WGCNA co-expression network analysis. Mol Med Rep. 2017;16(5):6499–505.CrossRef Zhai X, Xue Q, Liu Q, Guo Y, Chen Z. Colon cancer recurrence-associated genes revealed by WGCNA co-expression network analysis. Mol Med Rep. 2017;16(5):6499–505.CrossRef
10.
go back to reference Rau A, Flister MJ, Rui H, Livermore Auer P. Exploring Drivers of Gene Expression in The Cancer Genome Atlas. 2018:227926. Rau A, Flister MJ, Rui H, Livermore Auer P. Exploring Drivers of Gene Expression in The Cancer Genome Atlas. 2018:227926.
11.
go back to reference Lin WM, Baker AC, Beroukhim R, Winckler W, Feng W, Marmion JM, Laine E, Greulich H, Tseng H, Gates C. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 2008;68(3):664.CrossRef Lin WM, Baker AC, Beroukhim R, Winckler W, Feng W, Marmion JM, Laine E, Greulich H, Tseng H, Gates C. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 2008;68(3):664.CrossRef
12.
go back to reference Zhang B, Horvath S. A General Framework For Weighted Gene Co-Expression Network Analysis. Stat Appl Genet Mol Biol. 2005;4(1):Article17.CrossRef Zhang B, Horvath S. A General Framework For Weighted Gene Co-Expression Network Analysis. Stat Appl Genet Mol Biol. 2005;4(1):Article17.CrossRef
13.
go back to reference Chen-An T, Yi-Ju C, Chen JJ. Testing for differentially expressed genes with microarray data. Nucleic Acids Res. 2003;31(9):e52.CrossRef Chen-An T, Yi-Ju C, Chen JJ. Testing for differentially expressed genes with microarray data. Nucleic Acids Res. 2003;31(9):e52.CrossRef
14.
go back to reference Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat. 2016;10(2):946.CrossRef Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat. 2016;10(2):946.CrossRef
15.
go back to reference Smyth GK. Limma: linear models for microarray data[M]//Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 397-420. Smyth GK. Limma: linear models for microarray data[M]//Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 397-420.
16.
go back to reference Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45 Web Server issue. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45 Web Server issue.
17.
go back to reference Wang JH, Zhao LF, Lin P, Su XR, Chen SJ, Huang LQ, Wang HF, Zhang H, Hu ZF, Yao KT. GenCLiP 2.0: a web server for functional clustering of genes and construction of molecular networks based on free terms. Bioinformatics. 2014;30(17):2534–6.CrossRef Wang JH, Zhao LF, Lin P, Su XR, Chen SJ, Huang LQ, Wang HF, Zhang H, Hu ZF, Yao KT. GenCLiP 2.0: a web server for functional clustering of genes and construction of molecular networks based on free terms. Bioinformatics. 2014;30(17):2534–6.CrossRef
19.
go back to reference Posch C, Moslehi H, Feeney L, Green GA, Ebaee A, Feichtenschlager V, Chong K, Peng L, Dimon MT, Phillips T. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc Natl Acad Sci U S A. 2013;110(10):4015–20.CrossRef Posch C, Moslehi H, Feeney L, Green GA, Ebaee A, Feichtenschlager V, Chong K, Peng L, Dimon MT, Phillips T. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc Natl Acad Sci U S A. 2013;110(10):4015–20.CrossRef
20.
go back to reference Boussemart L, Malka-Mahieu H, Girault I, Allard D, Hemmingsson O, Tomasic G, Thomas M, Basmadjian C, Ribeiro N, Thuaud F, et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature. 2014;513(7516):105–9.CrossRef Boussemart L, Malka-Mahieu H, Girault I, Allard D, Hemmingsson O, Tomasic G, Thomas M, Basmadjian C, Ribeiro N, Thuaud F, et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature. 2014;513(7516):105–9.CrossRef
21.
go back to reference Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci. 2011;68(19):3149–63.CrossRef Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci. 2011;68(19):3149–63.CrossRef
22.
go back to reference Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011;10(12):945–63.CrossRef Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011;10(12):945–63.CrossRef
23.
go back to reference Baek M, Bae S, Jeong D. Relationship of pro-angiogenic factor Cyr61to colorectal cancer development and prognosis, vol. 29; 2011. Baek M, Bae S, Jeong D. Relationship of pro-angiogenic factor Cyr61to colorectal cancer development and prognosis, vol. 29; 2011.
24.
go back to reference D'Antonio KB, Lucianna S, Roula A, Mondul AM, Platz EA, Netto GJ, Getzenberg RH. Decreased expression of Cyr61 is associated with prostate cancer recurrence after surgical treatment. Clin Cancer Res. 2010;16(23):5908.CrossRef D'Antonio KB, Lucianna S, Roula A, Mondul AM, Platz EA, Netto GJ, Getzenberg RH. Decreased expression of Cyr61 is associated with prostate cancer recurrence after surgical treatment. Clin Cancer Res. 2010;16(23):5908.CrossRef
25.
go back to reference Peng HZ, Yun Z, Wang W, Ma BA. Dual specificity phosphatase 1 has a protective role in osteoarthritis fibroblastlike synoviocytes via inhibition of the MAPK signaling pathway. Mol Med Rep. 2017;16(6):8441–7.CrossRef Peng HZ, Yun Z, Wang W, Ma BA. Dual specificity phosphatase 1 has a protective role in osteoarthritis fibroblastlike synoviocytes via inhibition of the MAPK signaling pathway. Mol Med Rep. 2017;16(6):8441–7.CrossRef
26.
go back to reference Teng F, Xu Z, Chen J, Zheng G, Zheng G, Lv H, Wang Y, Wang L, Cheng X. DUSP1 induces apatinib resistance by activating the MAPK pathway in gastric cancer. Oncol Rep. 2018;40(3):1203–22.PubMedPubMedCentral Teng F, Xu Z, Chen J, Zheng G, Zheng G, Lv H, Wang Y, Wang L, Cheng X. DUSP1 induces apatinib resistance by activating the MAPK pathway in gastric cancer. Oncol Rep. 2018;40(3):1203–22.PubMedPubMedCentral
27.
go back to reference Keyse SM, Emslie EA. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature. 1992;359(6396):644–7.CrossRef Keyse SM, Emslie EA. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature. 1992;359(6396):644–7.CrossRef
28.
go back to reference Xiaoyi Z, J Madison H, Hong Y, D'Silva NJ, Kirkwood KL: DUSP1 phosphatase regulates the proinflammatory milieu in head and neck squamous cell carcinoma. Cancer Res 2014, 74(24):7191–7197. Xiaoyi Z, J Madison H, Hong Y, D'Silva NJ, Kirkwood KL: DUSP1 phosphatase regulates the proinflammatory milieu in head and neck squamous cell carcinoma. Cancer Res 2014, 74(24):7191–7197.
29.
go back to reference Moncho-Amor V, Cáceres IIED, Bandres E, Martínez-Poveda B, Orgaz JL, Sánchez-Pérez I, Zazo S, Rovira A, Albanell J, Jiménez B. DUSP1/MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer. Oncogene. 2011;30(6):668–78.CrossRef Moncho-Amor V, Cáceres IIED, Bandres E, Martínez-Poveda B, Orgaz JL, Sánchez-Pérez I, Zazo S, Rovira A, Albanell J, Jiménez B. DUSP1/MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer. Oncogene. 2011;30(6):668–78.CrossRef
30.
go back to reference Rosenberg HF, Dyer KD. Human ribonuclease 4 (RNase 4): coding sequence, chromosomal localization and identification of two distinct transcripts in human somatic tissues. Nucleic Acids Res. 1995;23(21):4290–5.CrossRef Rosenberg HF, Dyer KD. Human ribonuclease 4 (RNase 4): coding sequence, chromosomal localization and identification of two distinct transcripts in human somatic tissues. Nucleic Acids Res. 1995;23(21):4290–5.CrossRef
Metadata
Title
Weighted correlation network and differential expression analyses identify candidate genes associated with BRAF gene in melanoma
Authors
Bin Zhao
Yanqiu You
Zheng Wan
Yunhan Ma
Yani Huo
Hongyi Liu
Yuanyuan Zhou
Wei Quan
Weibin Chen
Xiaohong Zhang
Fujun Li
Yilin Zhao
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Melanoma
Melanoma
Published in
BMC Medical Genetics / Issue 1/2019
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0791-1

Other articles of this Issue 1/2019

BMC Medical Genetics 1/2019 Go to the issue