Skip to main content
Top
Published in: BMC Medical Genetics 1/2016

Open Access 01-12-2016 | Research article

Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57

Authors: Mads Bak, Susanne E. Boonen, Christina Dahl, Johanne M. D. Hahnemann, Deborah J. D. G. Mackay, Zeynep Tümer, Karen Grønskov, I. Karen Temple, Per Guldberg, Niels Tommerup

Published in: BMC Medical Genetics | Issue 1/2016

Login to get access

Abstract

Background

Transient neonatal diabetes mellitus 1 (TNDM1) is a rare imprinting disorder characterized by intrautering growth retardation and diabetes mellitus usually presenting within the first six weeks of life and resolves by the age of 18 months. However, patients have an increased risk of developing diabetes mellitus type 2 later in life. Transient neonatal diabetes mellitus 1 is caused by overexpression of the maternally imprinted genes PLAGL1 and HYMAI on chromosome 6q24. One of the mechanisms leading to overexpression of the locus is hypomethylation of the maternal allele of PLAGL1 and HYMAI. A subset of patients with maternal hypomethylation at PLAGL1 have hypomethylation at additional imprinted loci throughout the genome, including GRB10, ZIM2 (PEG3), MEST (PEG1), KCNQ1OT1 and NESPAS (GNAS-AS1). About half of the TNDM1 patients carry mutations in ZFP57, a transcription factor involved in establishment and maintenance of methylation of imprinted loci. Our objective was to investigate whether additional regions are aberrantly methylated in ZFP57 mutation carriers.

Methods

Genome-wide DNA methylation analysis was performed on four individuals with homozygous or compound heterozygous ZFP57 mutations, three relatives with heterozygous ZFP57 mutations and five controls. Methylation status of selected regions showing aberrant methylation in the patients was verified using bisulfite-sequencing.

Results

We found large variability among the patients concerning the number and identity of the differentially methylated regions, but more than 60 regions were aberrantly methylated in two or more patients and a novel region within PPP1R13L was found to be hypomethylated in all the patients. The hypomethylated regions in common between the patients are enriched for the ZFP57 DNA binding motif.

Conclusions

We have expanded the epimutational spectrum of TNDM1 associated with ZFP57 mutations and found one novel region within PPP1R13L which is hypomethylated in all TNDM1 patients included in this study. Functional studies of the locus might provide further insight into the etiology of the disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Biliya S, Bulla LA. Genomic imprinting: the influence of differential methylation in the two sexes. Exp Biol Med (Maywood). 2010;235:139–47.CrossRef Biliya S, Bulla LA. Genomic imprinting: the influence of differential methylation in the two sexes. Exp Biol Med (Maywood). 2010;235:139–47.CrossRef
2.
go back to reference Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev. 2004;14:188–95.CrossRefPubMed Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev. 2004;14:188–95.CrossRefPubMed
3.
go back to reference Mackay DJG, Temple IK. Transient neonatal diabetes mellitus type 1. Am J Med Genet C Semin Med Genet. 2010;154C:335–42.CrossRefPubMed Mackay DJG, Temple IK. Transient neonatal diabetes mellitus type 1. Am J Med Genet C Semin Med Genet. 2010;154C:335–42.CrossRefPubMed
4.
go back to reference Mackay DJG, Callaway JLA, Marks SM, White HE, Acerini CL, Boonen SE, Dayanikli P, Firth H V, Goodship JA, Haemers AP, Hahnemann JMD, Kordonouri O, Masoud AF, Oestergaard E, Storr J, Ellard S, Hattersley AT, Robinson DO, Temple IK. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet. 2008;40:949–51.CrossRefPubMed Mackay DJG, Callaway JLA, Marks SM, White HE, Acerini CL, Boonen SE, Dayanikli P, Firth H V, Goodship JA, Haemers AP, Hahnemann JMD, Kordonouri O, Masoud AF, Oestergaard E, Storr J, Ellard S, Hattersley AT, Robinson DO, Temple IK. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet. 2008;40:949–51.CrossRefPubMed
5.
go back to reference Boonen SE, Mackay DJG, Hahnemann JMD, Docherty L, Grønskov K, Lehmann A, Larsen LG, Haemers AP, Kockaerts Y, Dooms L, Vu DC, Ngoc CTB, Nguyen PB, Kordonouri O, Sundberg F, Dayanikli P, Puthi V, Acerini C, Massoud AF, Tümer Z, Temple IK. Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care. 2013;36:505–12.CrossRefPubMedPubMedCentral Boonen SE, Mackay DJG, Hahnemann JMD, Docherty L, Grønskov K, Lehmann A, Larsen LG, Haemers AP, Kockaerts Y, Dooms L, Vu DC, Ngoc CTB, Nguyen PB, Kordonouri O, Sundberg F, Dayanikli P, Puthi V, Acerini C, Massoud AF, Tümer Z, Temple IK. Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care. 2013;36:505–12.CrossRefPubMedPubMedCentral
6.
go back to reference Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell. 2008;15:547–57.CrossRefPubMedPubMedCentral Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell. 2008;15:547–57.CrossRefPubMedPubMedCentral
7.
go back to reference Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, Baglivo I, Pedone P V., Grimaldi G, Riccio A, Trono D. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell. 2011;44:361–72.CrossRefPubMedPubMedCentral Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, Baglivo I, Pedone P V., Grimaldi G, Riccio A, Trono D. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell. 2011;44:361–72.CrossRefPubMedPubMedCentral
8.
go back to reference Baglivo I, Esposito S, De Cesare L, Sparago A, Anvar Z, Riso V, Cammisa M, Fattorusso R, Grimaldi G, Riccio A, Pedone PV. Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1. FEBS Lett. 2013;587:1474–81.CrossRefPubMedPubMedCentral Baglivo I, Esposito S, De Cesare L, Sparago A, Anvar Z, Riso V, Cammisa M, Fattorusso R, Grimaldi G, Riccio A, Pedone PV. Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1. FEBS Lett. 2013;587:1474–81.CrossRefPubMedPubMedCentral
9.
go back to reference Docherty LE, Rezwan FI, Poole RL, Jagoe H, Lake H, Lockett GA, Arshad H, Wilson DI, Holloway JW, Temple IK, Mackay DJG. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J Med Genet. 2014;51:229–38.CrossRefPubMedPubMedCentral Docherty LE, Rezwan FI, Poole RL, Jagoe H, Lake H, Lockett GA, Arshad H, Wilson DI, Holloway JW, Temple IK, Mackay DJG. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J Med Genet. 2014;51:229–38.CrossRefPubMedPubMedCentral
10.
go back to reference Court F, Martin-Trujillo A, Romanelli V, Garin I, Iglesias-Platas I, Salafsky I, Guitart M, Perez de Nanclares G, Lapunzina P, Monk D. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum Mutat. 2013;34:595–602.PubMed Court F, Martin-Trujillo A, Romanelli V, Garin I, Iglesias-Platas I, Salafsky I, Guitart M, Perez de Nanclares G, Lapunzina P, Monk D. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum Mutat. 2013;34:595–602.PubMed
11.
go back to reference Martin-Subero JI, Bibikova M, Mackay D, Wickham-Garcia E, Sellami N, Richter J, Santer R, Caliebe A, Fan J-B, Temple IK, Siebert R. Microarray-based DNA methylation analysis of imprinted loci in a patient with transient neonatal diabetes mellitus. Am J Med Genet A. 2008;146A:3227–9.CrossRefPubMed Martin-Subero JI, Bibikova M, Mackay D, Wickham-Garcia E, Sellami N, Richter J, Santer R, Caliebe A, Fan J-B, Temple IK, Siebert R. Microarray-based DNA methylation analysis of imprinted loci in a patient with transient neonatal diabetes mellitus. Am J Med Genet A. 2008;146A:3227–9.CrossRefPubMed
13.
go back to reference Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu XS. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.CrossRefPubMedPubMedCentral Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu XS. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.CrossRefPubMedPubMedCentral
14.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.CrossRefPubMedPubMedCentral Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.CrossRefPubMedPubMedCentral
15.
go back to reference Lan X, Adams C, Landers M, Dudas M, Krissinger D, Marnellos G, et al. High resolution detection and analysis of CpG dinucleotides methylation using MBD-seq technology. PLoS One. 2011;6. Lan X, Adams C, Landers M, Dudas M, Krissinger D, Marnellos G, et al. High resolution detection and analysis of CpG dinucleotides methylation using MBD-seq technology. PLoS One. 2011;6.
16.
17.
go back to reference Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 2010;38:391–9.CrossRefPubMedPubMedCentral Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 2010;38:391–9.CrossRefPubMedPubMedCentral
18.
go back to reference Bergamaschi D, Samuels Y, O’Neil NJ, Trigiante G, Crook T, Hsieh J-K, O’Connor DJ, Zhong S, Campargue I, Tomlinson ML, Kuwabara PE, Lu X. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet. 2003;33:162–7.CrossRefPubMed Bergamaschi D, Samuels Y, O’Neil NJ, Trigiante G, Crook T, Hsieh J-K, O’Connor DJ, Zhong S, Campargue I, Tomlinson ML, Kuwabara PE, Lu X. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet. 2003;33:162–7.CrossRefPubMed
19.
go back to reference Zhang X, Wang M, Zhou C, Chen S, Wang J. The expression of iASPP in acute leukemias. Leuk Res. 2005;29:179–83.CrossRefPubMed Zhang X, Wang M, Zhou C, Chen S, Wang J. The expression of iASPP in acute leukemias. Leuk Res. 2005;29:179–83.CrossRefPubMed
20.
go back to reference Jiang L, Siu MKY, Wong OGW, Tam KF, Lu X, Lam EWF, Ngan HYS, Le XF, Wong ESY, Monteiro LJ, Chan HY, Cheung ANY. iASPP and chemoresistance in ovarian cancers: effects on paclitaxel-mediated mitotic catastrophe. Clin Cancer Res. 2011;17:6924–33.CrossRefPubMed Jiang L, Siu MKY, Wong OGW, Tam KF, Lu X, Lam EWF, Ngan HYS, Le XF, Wong ESY, Monteiro LJ, Chan HY, Cheung ANY. iASPP and chemoresistance in ovarian cancers: effects on paclitaxel-mediated mitotic catastrophe. Clin Cancer Res. 2011;17:6924–33.CrossRefPubMed
21.
go back to reference Liu Z, Zhang X, Huang D, Liu Y, Zhang X, Liu L, Li G, Dai Y, Tan H, Xiao J, Tian Y. Elevated expression of iASPP in head and neck squamous cell carcinoma and its clinical significance. Med Oncol. 2012;29:3381–8.CrossRefPubMed Liu Z, Zhang X, Huang D, Liu Y, Zhang X, Liu L, Li G, Dai Y, Tan H, Xiao J, Tian Y. Elevated expression of iASPP in head and neck squamous cell carcinoma and its clinical significance. Med Oncol. 2012;29:3381–8.CrossRefPubMed
22.
go back to reference Petryszak R, Burdett T, Fiorelli B, Fonseca N a., Gonzalez-Porta M, Hastings E, Huber W, Jupp S, Keays M, Kryvych N, McMurry J, Marioni JC, Malone J, Megy K, Rustici G, Tang AY, Taubert J, Williams E, Mannion O, Parkinson HE, Brazma A. Expression Atlas update - a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments. Nucleic Acids Res. 2014;42(December 2013):926–32.CrossRef Petryszak R, Burdett T, Fiorelli B, Fonseca N a., Gonzalez-Porta M, Hastings E, Huber W, Jupp S, Keays M, Kryvych N, McMurry J, Marioni JC, Malone J, Megy K, Rustici G, Tang AY, Taubert J, Williams E, Mannion O, Parkinson HE, Brazma A. Expression Atlas update - a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments. Nucleic Acids Res. 2014;42(December 2013):926–32.CrossRef
23.
go back to reference Herron BJ, Rao C, Liu S, Laprade L, Richardson J a., Oliveri E, Semsarian C, Millar SE, Stubbs L, Beier DR. A mutation in NFkB interacting protein 1 results in cardiomyopathy and abnormal skin development in wa3 mice. Hum Mol Genet. 2005;14:667–77.CrossRefPubMed Herron BJ, Rao C, Liu S, Laprade L, Richardson J a., Oliveri E, Semsarian C, Millar SE, Stubbs L, Beier DR. A mutation in NFkB interacting protein 1 results in cardiomyopathy and abnormal skin development in wa3 mice. Hum Mol Genet. 2005;14:667–77.CrossRefPubMed
24.
go back to reference Elliott G, Hong C, Xing X, Zhou X, Li D, Coarfa C, Bell RJ a., Maire CL, Ligon KL, Sigaroudinia M, Gascard P, Tlsty TD, Harris RA, Schalkwyk LC, Bilenky M, Mill J, Farnham PJ, Kellis M, Marra M a., Milosavljevic A, Hirst M, Stormo GD, Wang T, Costello JF. Intermediate DNA methylation is a conserved signature of genome regulation. Nat Commun. 2015;6:6363.CrossRefPubMedPubMedCentral Elliott G, Hong C, Xing X, Zhou X, Li D, Coarfa C, Bell RJ a., Maire CL, Ligon KL, Sigaroudinia M, Gascard P, Tlsty TD, Harris RA, Schalkwyk LC, Bilenky M, Mill J, Farnham PJ, Kellis M, Marra M a., Milosavljevic A, Hirst M, Stormo GD, Wang T, Costello JF. Intermediate DNA methylation is a conserved signature of genome regulation. Nat Commun. 2015;6:6363.CrossRefPubMedPubMedCentral
25.
go back to reference Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr ARW, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 2010;6:e1001134.CrossRefPubMedPubMedCentral Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr ARW, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 2010;6:e1001134.CrossRefPubMedPubMedCentral
26.
go back to reference Jones P a. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.CrossRefPubMed Jones P a. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.CrossRefPubMed
27.
go back to reference Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, et al. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS One 2013; 8:e81148. Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, et al. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS One 2013; 8:e81148.
28.
go back to reference Court F, Tayama C, Romanelli V, Martin-Trujillo A, Iglesias-Platas I, Okamura K, et al. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res. 2014; 24:554–69. Court F, Tayama C, Romanelli V, Martin-Trujillo A, Iglesias-Platas I, Okamura K, et al. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res. 2014; 24:554–69.
29.
go back to reference Okae H, Chiba H, Hiura H, Hamada H, Sato A. Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet. 2014;10:1–12.CrossRef Okae H, Chiba H, Hiura H, Hamada H, Sato A. Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet. 2014;10:1–12.CrossRef
30.
go back to reference Gimelbrant A, Hutchinson JN, Thompson BR, Chess A. Widespread monoallelic expression on human autosomes. Science. 2007;318:1136–40.CrossRefPubMed Gimelbrant A, Hutchinson JN, Thompson BR, Chess A. Widespread monoallelic expression on human autosomes. Science. 2007;318:1136–40.CrossRefPubMed
31.
go back to reference Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, Li K, Murty V V, Schupf N, Vilain E, Morris M, Haghighi F, Tycko B. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet. 2008;40:904–8.CrossRefPubMed Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, Li K, Murty V V, Schupf N, Vilain E, Morris M, Haghighi F, Tycko B. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet. 2008;40:904–8.CrossRefPubMed
32.
go back to reference Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN, Plomin R, Mill J. Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet. 2010;86:196–212.CrossRefPubMedPubMedCentral Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN, Plomin R, Mill J. Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet. 2010;86:196–212.CrossRefPubMedPubMedCentral
33.
go back to reference Zhang Y, Rohde C, Reinhardt R, Voelcker-Rehage C, Jeltsch A. Non-imprinted allele-specific DNA methylation on human autosomes. Genome Biol. 2009;10:R138.CrossRefPubMedPubMedCentral Zhang Y, Rohde C, Reinhardt R, Voelcker-Rehage C, Jeltsch A. Non-imprinted allele-specific DNA methylation on human autosomes. Genome Biol. 2009;10:R138.CrossRefPubMedPubMedCentral
34.
35.
go back to reference Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou Y, Ferreira JC, Pinto D, Scherer SW, Shaffer LG, Coullin P, Caniggia I, Beyene J, Slim R, Bartolomei MS, Weksberg R. A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res. 2011;21:465–76.CrossRefPubMedPubMedCentral Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou Y, Ferreira JC, Pinto D, Scherer SW, Shaffer LG, Coullin P, Caniggia I, Beyene J, Slim R, Bartolomei MS, Weksberg R. A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res. 2011;21:465–76.CrossRefPubMedPubMedCentral
36.
go back to reference Metsalu T, Viltrop T, Tiirats A, Rajashekar B, Reimann E, Kõks S, Rull K, Milani L, Acharya G, Basnet P, Vilo J, Mägi R, Metspalu A, Peters M, Haller-Kikkatalo K, Salumets A. Using RNA sequencing for identifying gene imprinting and random monoallelic expression in human placenta. Epigenetics. 2014;9:1397–409.CrossRefPubMedPubMedCentral Metsalu T, Viltrop T, Tiirats A, Rajashekar B, Reimann E, Kõks S, Rull K, Milani L, Acharya G, Basnet P, Vilo J, Mägi R, Metspalu A, Peters M, Haller-Kikkatalo K, Salumets A. Using RNA sequencing for identifying gene imprinting and random monoallelic expression in human placenta. Epigenetics. 2014;9:1397–409.CrossRefPubMedPubMedCentral
37.
go back to reference Stelzer Y, Ronen D, Bock C, Boyle P, Meissner A, Benvenisty N. Identification of novel imprinted differentially methylated regions by global analysis of human-parthenogenetic-induced pluripotent stem cells. Stem Cell Rep. 2013;1:79–89.CrossRef Stelzer Y, Ronen D, Bock C, Boyle P, Meissner A, Benvenisty N. Identification of novel imprinted differentially methylated regions by global analysis of human-parthenogenetic-induced pluripotent stem cells. Stem Cell Rep. 2013;1:79–89.CrossRef
38.
go back to reference Barbaux S, Gascoin-Lachambre G, Buffat C, Monnier P, Mondon F, Tonanny MB, Pinard A, Auer J, Bessières B, Barlier A, Jacques S, Simeoni U, Dandolo L, Letourneur F, Jammes H, Vaiman D. A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Epigenetics. 2012;7(February 2015):1079–90.CrossRefPubMedPubMedCentral Barbaux S, Gascoin-Lachambre G, Buffat C, Monnier P, Mondon F, Tonanny MB, Pinard A, Auer J, Bessières B, Barlier A, Jacques S, Simeoni U, Dandolo L, Letourneur F, Jammes H, Vaiman D. A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Epigenetics. 2012;7(February 2015):1079–90.CrossRefPubMedPubMedCentral
39.
go back to reference Yuen RK, Jiang R, Peñaherrera MS, McFadden DE, Robinson WP. Genome-wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies. Epigenetics Chromatin. 2011;4:10.CrossRefPubMedPubMedCentral Yuen RK, Jiang R, Peñaherrera MS, McFadden DE, Robinson WP. Genome-wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies. Epigenetics Chromatin. 2011;4:10.CrossRefPubMedPubMedCentral
40.
go back to reference Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 2015;25:927–36. Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 2015;25:927–36.
41.
go back to reference Beygo J, Ammerpohl O, Gritzan D, Heitmann M, Rademacher K, Richter J, Caliebe A, Siebert R, Horsthemke B, Buiting K. Deep bisulfite sequencing of aberrantly methylated Loci in a patient with multiple methylation defects. PLoS One. 2013;8:e76953.CrossRefPubMedPubMedCentral Beygo J, Ammerpohl O, Gritzan D, Heitmann M, Rademacher K, Richter J, Caliebe A, Siebert R, Horsthemke B, Buiting K. Deep bisulfite sequencing of aberrantly methylated Loci in a patient with multiple methylation defects. PLoS One. 2013;8:e76953.CrossRefPubMedPubMedCentral
42.
go back to reference Caliebe A, Richter J, Ammerpohl O, Kanber D, Beygo J, Bens S, Haake A, Jüttner E, Korn B, Mackay DJG, Martin-Subero JI, Nagel I, Sebire NJ, Seidmann L, Vater I, von Kaisenberg CS, Temple IK, Horsthemke B, Buiting K, Siebert R. A familial disorder of altered DNA-methylation. J Med Genet. 2014;51:407–12.CrossRefPubMed Caliebe A, Richter J, Ammerpohl O, Kanber D, Beygo J, Bens S, Haake A, Jüttner E, Korn B, Mackay DJG, Martin-Subero JI, Nagel I, Sebire NJ, Seidmann L, Vater I, von Kaisenberg CS, Temple IK, Horsthemke B, Buiting K, Siebert R. A familial disorder of altered DNA-methylation. J Med Genet. 2014;51:407–12.CrossRefPubMed
Metadata
Title
Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57
Authors
Mads Bak
Susanne E. Boonen
Christina Dahl
Johanne M. D. Hahnemann
Deborah J. D. G. Mackay
Zeynep Tümer
Karen Grønskov
I. Karen Temple
Per Guldberg
Niels Tommerup
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2016
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-016-0292-4

Other articles of this Issue 1/2016

BMC Medical Genetics 1/2016 Go to the issue