Skip to main content
Top
Published in: BMC Medical Genetics 1/2015

Open Access 01-12-2015 | Research article

Insight into response to mTOR inhibition when PKD1 and TSC2 are mutated

Authors: Cristina Cabrera-López, Gemma Bullich, Teresa Martí, Violeta Català, Jose Ballarín, John J. Bissler, Peter C. Harris, Elisabet Ars, Roser Torra

Published in: BMC Medical Genetics | Issue 1/2015

Login to get access

Abstract

Background

Mutations in TSC1 or TSC2 cause the tuberous sclerosis complex (TSC), while mutations in PKD1 or PKD2 cause autosomal dominant polycystic kidney disease (ADPKD). PKD1 lays immediately adjacent to TSC2 and deletions involving both genes, the PKD1/TSC2 contiguous gene syndrome (CGS), are characterized by severe ADPKD, plus TSC. mTOR inhibitors have proven effective in reducing angiomyolipoma (AML) in TSC and total kidney volume in ADPKD but without a positive effect on renal function.

Methods and results

We describe a patient with independent truncating PKD1 and TSC2 mutations who has the expected phenotype for both diseases independently instead of the severe one described in PKD1/TSC2-CGS. Treatment with mTOR inhibitors reduced the AML and kidney volume for 2 years but thereafter they resumed growth; no positive effect on renal function was seen throughout. This is the first case addressing the response to mTOR treatment when independent truncating mutations in PKD1 and TSC2 are present.

Conclusions

This case reveals that although PKD1 and TSC2 are adjacent genes and there is likely cross-talk between the PKD1 and TSC2 signalling pathways regulating mTOR, having independent TSC2 and PKD1 mutations can give rise to a milder kidney phenotype than is typical in PKD1/TSC2-CGS cases. A short-term beneficial effect of mTOR inhibition on AML and total kidney volume was not reflected in improved renal function.
Literature
1.
go back to reference Iglesias CG, Torres VE, Offord KP, Holley KE, Beard CM, Kurland LT. Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935–1980. Am J Kidney Dis. 1983;2:630–9.CrossRefPubMed Iglesias CG, Torres VE, Offord KP, Holley KE, Beard CM, Kurland LT. Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935–1980. Am J Kidney Dis. 1983;2:630–9.CrossRefPubMed
2.
go back to reference Dalgaard OZ. Bilateral polycystic disease of the kidneys; a follow-up of two hundred and eighty-four patients and their families. Acta Med Scand Suppl. 1957;328:1–255.PubMed Dalgaard OZ. Bilateral polycystic disease of the kidneys; a follow-up of two hundred and eighty-four patients and their families. Acta Med Scand Suppl. 1957;328:1–255.PubMed
4.
go back to reference Catalan Transplant Organisation HD GdC. Catalan Renal Registry. 2011. Catalan Transplant Organisation HD GdC. Catalan Renal Registry. 2011.
5.
go back to reference The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell. 1994;78. The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell. 1994;78.
6.
go back to reference Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272:1339–42.CrossRefPubMed Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272:1339–42.CrossRefPubMed
8.
go back to reference Northrup H, Krueger DA. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 Iinternational Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:243–54.CrossRefPubMedPubMedCentral Northrup H, Krueger DA. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 Iinternational Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:243–54.CrossRefPubMedPubMedCentral
10.
go back to reference Brook-Carter PT, Peral B, Ward CJ, Thompson P, Hughes J, Maheshwar MM, et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease–a contiguous gene syndrome. Nat Genet. 1994;8:328–32.CrossRefPubMed Brook-Carter PT, Peral B, Ward CJ, Thompson P, Hughes J, Maheshwar MM, et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease–a contiguous gene syndrome. Nat Genet. 1994;8:328–32.CrossRefPubMed
11.
go back to reference Torra R, Badenas C, Darnell A, Camacho JA, Aspinwall R, Harris PC, et al. Facilitated diagnosis of the contiguous gene syndrome: tuberous sclerosis and polycystic kidneys by means of haplotype studies. Am J Kidney Dis. 1998;31:1038–43.CrossRefPubMed Torra R, Badenas C, Darnell A, Camacho JA, Aspinwall R, Harris PC, et al. Facilitated diagnosis of the contiguous gene syndrome: tuberous sclerosis and polycystic kidneys by means of haplotype studies. Am J Kidney Dis. 1998;31:1038–43.CrossRefPubMed
12.
go back to reference Consugar MB, Wong WC, Lundquist PA, Rossetti S, Kubly VJ, Walker DL, et al. Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome. Kidney Int. 2008;74:1468–79.CrossRefPubMedPubMedCentral Consugar MB, Wong WC, Lundquist PA, Rossetti S, Kubly VJ, Walker DL, et al. Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome. Kidney Int. 2008;74:1468–79.CrossRefPubMedPubMedCentral
13.
go back to reference Smulders YM, Eussen BH, Verhoef SWC. Large deletion causing the TSC2-PKD1 contiguous gene syndrome without infantil polycytic disease. J Med Genet. 2003;40:2–4.CrossRef Smulders YM, Eussen BH, Verhoef SWC. Large deletion causing the TSC2-PKD1 contiguous gene syndrome without infantil polycytic disease. J Med Genet. 2003;40:2–4.CrossRef
14.
go back to reference Martignoni G, Bonetti F, Pea M, Tardanico R, Brunelli M, Eble JN. Renal disease in adults with TSC2/PKD1 contiguous gene syndrome. Am J Surg Pathol. 2002;26:198–205.CrossRefPubMed Martignoni G, Bonetti F, Pea M, Tardanico R, Brunelli M, Eble JN. Renal disease in adults with TSC2/PKD1 contiguous gene syndrome. Am J Surg Pathol. 2002;26:198–205.CrossRefPubMed
15.
go back to reference Mancino C, Balducci A. Tuberous sclerosis complex and early-onset autosomal dominant polycystic kidney disease as a “contiguous gene” syndrome: report of a case. Contrib Nephrol. 1997;122:96–7.CrossRefPubMed Mancino C, Balducci A. Tuberous sclerosis complex and early-onset autosomal dominant polycystic kidney disease as a “contiguous gene” syndrome: report of a case. Contrib Nephrol. 1997;122:96–7.CrossRefPubMed
16.
go back to reference Culty T, Molinie V, Lebret T, Savareux L, Souid M, Delahousse M, et al. TSC2/PKD1 contiguous gene syndrome in an adult. Minerva Urol Nefrol. 2006;58:351–4.PubMed Culty T, Molinie V, Lebret T, Savareux L, Souid M, Delahousse M, et al. TSC2/PKD1 contiguous gene syndrome in an adult. Minerva Urol Nefrol. 2006;58:351–4.PubMed
17.
go back to reference Sampson JR, Maheshwar MM, Aspinwall R, Thompson P, Cheadle JP, Ravine D, et al. Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am J Hum Genet. 1997;61:843–51.CrossRefPubMedPubMedCentral Sampson JR, Maheshwar MM, Aspinwall R, Thompson P, Cheadle JP, Ravine D, et al. Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am J Hum Genet. 1997;61:843–51.CrossRefPubMedPubMedCentral
19.
go back to reference Distefano G, Boca M, Rowe I, Wodarczyk C, Ma L, Piontek KB, et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol. 2009;29:2359–71.CrossRefPubMedPubMedCentral Distefano G, Boca M, Rowe I, Wodarczyk C, Ma L, Piontek KB, et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol. 2009;29:2359–71.CrossRefPubMedPubMedCentral
20.
go back to reference Weimbs T. Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair? Cell Cycle. 2006;5:2425–9.CrossRefPubMed Weimbs T. Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair? Cell Cycle. 2006;5:2425–9.CrossRefPubMed
21.
go back to reference Dere R, Wilson PD, Sandford RN, Walker CL. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS One. 2010;5:e9239.CrossRefPubMedPubMedCentral Dere R, Wilson PD, Sandford RN, Walker CL. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS One. 2010;5:e9239.CrossRefPubMedPubMedCentral
23.
go back to reference Bissler JJ, Kingswood JC, Radzikowska E, Zonnenberg BA, Frost M, Belousova E, et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2013;381:817–24.CrossRefPubMed Bissler JJ, Kingswood JC, Radzikowska E, Zonnenberg BA, Frost M, Belousova E, et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2013;381:817–24.CrossRefPubMed
24.
go back to reference Davies DM, de Vries PJ, Johnson SR, McCartney DL, Cox JA, Serra AL, et al. Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res. 2011;17:4071–81.CrossRefPubMed Davies DM, de Vries PJ, Johnson SR, McCartney DL, Cox JA, Serra AL, et al. Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res. 2011;17:4071–81.CrossRefPubMed
25.
go back to reference Cabrera-Lopez C, Marti T, Catala V, Torres F, Mateu S, Ballarin J, et al. Assessing the effectiveness of rapamycin on angiomyolipoma in tuberous sclerosis: a two years trial. Orphanet J Rare Dis. 2012;7:87.CrossRefPubMedPubMedCentral Cabrera-Lopez C, Marti T, Catala V, Torres F, Mateu S, Ballarin J, et al. Assessing the effectiveness of rapamycin on angiomyolipoma in tuberous sclerosis: a two years trial. Orphanet J Rare Dis. 2012;7:87.CrossRefPubMedPubMedCentral
26.
go back to reference Dabora SL, Franz DN, Ashwal S, Sagalowsky A, DiMario Jr FJ, Miles D, et al. Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress VEGF-D levels descrease. PLoS One. 2011;6, e23379.CrossRefPubMedPubMedCentral Dabora SL, Franz DN, Ashwal S, Sagalowsky A, DiMario Jr FJ, Miles D, et al. Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress VEGF-D levels descrease. PLoS One. 2011;6, e23379.CrossRefPubMedPubMedCentral
27.
go back to reference Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:820–9.CrossRefPubMed Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:820–9.CrossRefPubMed
28.
go back to reference Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:830–40.CrossRefPubMed Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:830–40.CrossRefPubMed
29.
go back to reference Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int. 2003. doi:10.1046/j.1523-1755.2003.00185.x. Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int. 2003. doi:10.​1046/​j.​1523-1755.​2003.​00185.​x.
30.
go back to reference Bae KT, Commean PK, Lee J. Volumetric measurement of renal cysts and parenchyma using MRI: phantoms and patients with polycystic kidney disease. J Comput Assist Tomogr. 2000;24:614–9.CrossRefPubMed Bae KT, Commean PK, Lee J. Volumetric measurement of renal cysts and parenchyma using MRI: phantoms and patients with polycystic kidney disease. J Comput Assist Tomogr. 2000;24:614–9.CrossRefPubMed
31.
go back to reference Rossetti S, Chauveau D, Walker D, Saggar-Malik A, Winearls CG, Torres VE, et al. A complete mutation screen of the ADPKD genes by DHPLC. Kidney Int. 2002;61:1588–99.CrossRefPubMed Rossetti S, Chauveau D, Walker D, Saggar-Malik A, Winearls CG, Torres VE, et al. A complete mutation screen of the ADPKD genes by DHPLC. Kidney Int. 2002;61:1588–99.CrossRefPubMed
32.
go back to reference Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.CrossRefPubMedPubMedCentral Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.CrossRefPubMedPubMedCentral
33.
go back to reference Oyazato Y, Iijima K, Emi M, Sekine T, Kamei K, Takanashi J, et al. Molecular analysis of TSC2/PKD1 contiguous gene deletion syndrome. Kobe J Med Sci. 2011;57:E1–10.PubMed Oyazato Y, Iijima K, Emi M, Sekine T, Kamei K, Takanashi J, et al. Molecular analysis of TSC2/PKD1 contiguous gene deletion syndrome. Kobe J Med Sci. 2011;57:E1–10.PubMed
34.
go back to reference Longa L, Brusco A, Carbonara C, Polidoro S, Scolari F, Valzorio B, et al. A tuberous sclerosis patient with a large TSC2 and PKD1 gene deletion shows extrarenal signs of autosomal dominant polycystic kidney disease. Contrib Nephrol. 1997;122:91–5.CrossRefPubMed Longa L, Brusco A, Carbonara C, Polidoro S, Scolari F, Valzorio B, et al. A tuberous sclerosis patient with a large TSC2 and PKD1 gene deletion shows extrarenal signs of autosomal dominant polycystic kidney disease. Contrib Nephrol. 1997;122:91–5.CrossRefPubMed
36.
go back to reference Sancak O, Nellist M, Goedbloed M, Elfferich P, Wouters C, Maat-Kievit A, et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet. 2005;13:731–41.CrossRefPubMed Sancak O, Nellist M, Goedbloed M, Elfferich P, Wouters C, Maat-Kievit A, et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet. 2005;13:731–41.CrossRefPubMed
37.
go back to reference Kozlowski P, Roberts P, Dabora S, Franz D, Bissler J, Northrup H, et al. Identification of 54 large deletions/duplications in TSC1 and TSC2 using MLPA, and genotype-phenotype correlations. Hum Genet. 2007. doi:10.1007/s00439-006-0308-9.PubMed Kozlowski P, Roberts P, Dabora S, Franz D, Bissler J, Northrup H, et al. Identification of 54 large deletions/duplications in TSC1 and TSC2 using MLPA, and genotype-phenotype correlations. Hum Genet. 2007. doi:10.​1007/​s00439-006-0308-9.PubMed
38.
go back to reference Boehm D, Bacher J, Neumann HP. Gross genomic rearrangement involving the TSC2-PKD1 contiguous deletion syndrome: characterization of the deletion event by quantitative polymerase chain reaction deletion assay. Am J Kidney Dis. 2007;49:e11–21.CrossRefPubMed Boehm D, Bacher J, Neumann HP. Gross genomic rearrangement involving the TSC2-PKD1 contiguous deletion syndrome: characterization of the deletion event by quantitative polymerase chain reaction deletion assay. Am J Kidney Dis. 2007;49:e11–21.CrossRefPubMed
39.
go back to reference Woerner AC, Au KS, Williams AT, Harris PCNH. Tuberous sclerosis complex and polycystic kidney disease together: an exception to the contiguous gene syndrome. Genet Med. 2006;8:197–8.CrossRefPubMed Woerner AC, Au KS, Williams AT, Harris PCNH. Tuberous sclerosis complex and polycystic kidney disease together: an exception to the contiguous gene syndrome. Genet Med. 2006;8:197–8.CrossRefPubMed
40.
go back to reference Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T, et al. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet. 2009;18:151–63.CrossRefPubMed Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T, et al. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet. 2009;18:151–63.CrossRefPubMed
41.
go back to reference Yoder BK, Tousson A, Millican L, Wu JH, Bugg Jr CE, Schafer JA, et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Ren Physiol. 2002;282:F541–52.CrossRef Yoder BK, Tousson A, Millican L, Wu JH, Bugg Jr CE, Schafer JA, et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Ren Physiol. 2002;282:F541–52.CrossRef
42.
go back to reference Schonenberger E, Ehrich JH, Haller H, Schiffer M. The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transplant. 2011;26:18–24.CrossRefPubMed Schonenberger E, Ehrich JH, Haller H, Schiffer M. The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transplant. 2011;26:18–24.CrossRefPubMed
43.
go back to reference Cina DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J, et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol. 2012;23:412–20.CrossRefPubMedPubMedCentral Cina DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J, et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol. 2012;23:412–20.CrossRefPubMedPubMedCentral
44.
go back to reference Letavernier E, Legendre C. mToR inhibitors-induced proteinuria: mechanisms, significance, and management. Transplant Rev. 2008;22:125–30.CrossRef Letavernier E, Legendre C. mToR inhibitors-induced proteinuria: mechanisms, significance, and management. Transplant Rev. 2008;22:125–30.CrossRef
45.
go back to reference Kirsch AH, Riegelbauer V, Tagwerker A, Rudnicki M, Rosenkranz AR, Eller K. The mTOR-inhibitor rapamycin mediates proteinuria in nephrotoxic serum nephritis by activating the innate immune response. Am J Physiol Renal Physiol. 2012;303:F569–75.CrossRefPubMed Kirsch AH, Riegelbauer V, Tagwerker A, Rudnicki M, Rosenkranz AR, Eller K. The mTOR-inhibitor rapamycin mediates proteinuria in nephrotoxic serum nephritis by activating the innate immune response. Am J Physiol Renal Physiol. 2012;303:F569–75.CrossRefPubMed
46.
go back to reference Diekmann F, Andres A, Oppenheimer F. mTOR inhibitor-associated proteinuria in kidney transplant recipients. Transplant Rev. 2012;26:27–9.CrossRef Diekmann F, Andres A, Oppenheimer F. mTOR inhibitor-associated proteinuria in kidney transplant recipients. Transplant Rev. 2012;26:27–9.CrossRef
47.
go back to reference Stallone G, Infante B, Pontrelli P, Gigante M, Montemurno E, Loverre A, et al. Sirolimus and proteinuria in renal transplant patients: evidence for a dose-dependent effect on slit diaphragm-associated proteins. Transplantation. 2011;91:997–1004.CrossRefPubMed Stallone G, Infante B, Pontrelli P, Gigante M, Montemurno E, Loverre A, et al. Sirolimus and proteinuria in renal transplant patients: evidence for a dose-dependent effect on slit diaphragm-associated proteins. Transplantation. 2011;91:997–1004.CrossRefPubMed
Metadata
Title
Insight into response to mTOR inhibition when PKD1 and TSC2 are mutated
Authors
Cristina Cabrera-López
Gemma Bullich
Teresa Martí
Violeta Català
Jose Ballarín
John J. Bissler
Peter C. Harris
Elisabet Ars
Roser Torra
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2015
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-015-0185-y

Other articles of this Issue 1/2015

BMC Medical Genetics 1/2015 Go to the issue